Solveeit Logo

Question

Question: Evaluate the given integration \[\int\limits_{0}^{2\pi }{\dfrac{1}{1+{{e}^{\sin x}}}}\]...

Evaluate the given integration 02π11+esinx\int\limits_{0}^{2\pi }{\dfrac{1}{1+{{e}^{\sin x}}}}

Explanation

Solution

To find the value of 02π11+esinx\int\limits_{0}^{2\pi }{\dfrac{1}{1+{{e}^{\sin x}}}} :this is a definite integral of limits from 0 to 2π2\pi so we will use the property of definite integrals. 02af(x)=0af(x)+0af(2πx)\int\limits_{0}^{2a}{f(x)}=\int\limits_{0}^{a}{f(x)}+\int\limits_{0}^{a}{f(2\pi -x)} and then after solving a little and using one trigonometric property sin(2πx)=sinx\sin (2\pi -x)=-sinx and then our whole expression converts to 1 and then integrate 1 from 0 to π\pi , we get the answer as π\pi

Complete step-by-step solution:
We have to find value of 02π11+esinx\int\limits_{0}^{2\pi }{\dfrac{1}{1+{{e}^{\sin x}}}} , so before going onto this let us remind one property of definite integral that is 02af(x)=0af(x)+0af(2πx)\int\limits_{0}^{2a}{f(x)}=\int\limits_{0}^{a}{f(x)}+\int\limits_{0}^{a}{f(2\pi -x)} , now let’s compare this property to our question
We can compare a with π\pi ,so we can write our expression as 02π11+esinxdx=0π11+esinxdx+0π11+esin(2πx)dx\int\limits_{0}^{2\pi }{\dfrac{1}{1+{{e}^{\sin x}}}}dx=\int\limits_{0}^{\pi }{\dfrac{1}{1+{{e}^{\sin x}}}dx}+\int\limits_{0}^{\pi }{\dfrac{1}{1+{{e}^{\sin (2\pi -x)}}}dx}
So now we have to solve RHS value only now recalling one property of trigonometry that is
sin(2πx)=sinx\sin (2\pi -x)=-sinx, it means we can write esin(2πx)=esin(x){{e}^{\sin (2\pi -x)}}={{e}^{-\sin (x)}} so on applying this property on our LHS we can write it as
02π11+esinxdx=0π11+esinxdx+0π11+esinxdx\int\limits_{0}^{2\pi }{\dfrac{1}{1+{{e}^{\sin x}}}}dx=\int\limits_{0}^{\pi }{\dfrac{1}{1+{{e}^{\sin x}}}dx}+\int\limits_{0}^{\pi }{\dfrac{1}{1+{{e}^{-\sin x}}}dx}, now we can also write this expression as
Using this property abf(x)±g(x)=abf(x)±abg(x)\int\limits_{a}^{b}{f(x)\pm g(x)}=\int\limits_{a}^{b}{f(x)\pm \int\limits_{a}^{b}{g(x)}}
02π11+esinxdx=0π(11+esinx+11+esinx)dx........(1)\int\limits_{0}^{2\pi }{\dfrac{1}{1+{{e}^{\sin x}}}}dx=\int\limits_{0}^{\pi }{(\dfrac{1}{1+{{e}^{\sin x}}}}+\dfrac{1}{1+{{e}^{-\sin x}}})dx........(1) because the limits are same
ex=1ex{{e}^{-x}}=\dfrac{1}{{{e}^{x}}} similarly, esinx=1esinx{{e}^{-\sin x}}=\dfrac{1}{{{e}^{\sin x}}}
Now on solving we can write expression 11+esinx=esinx1+esinx.......(2)\dfrac{1}{1+{{e}^{-\sin x}}}=\dfrac{{{e}^{\sin x}}}{1+{{e}^{\sin x}}}.......(2)
Now on putting equation (2) back into the equation (1)
We get expression 02π11+esinxdx=0π(11+esinx+esinx1+esinx)dx\int\limits_{0}^{2\pi }{\dfrac{1}{1+{{e}^{\sin x}}}dx}=\int\limits_{0}^{\pi }{(\dfrac{1}{1+{{e}^{\sin x}}}}+\dfrac{{{e}^{\sin x}}}{1+{{e}^{\sin x}}})dx
Which can be further written as 02π11+esinxdx=0π1+esinx1+esinxdx=0π1dx\int\limits_{0}^{2\pi }{\dfrac{1}{1+{{e}^{\sin x}}}}dx=\int\limits_{0}^{\pi }{\dfrac{1+{{e}^{\sin x}}}{1+{{e}^{\sin x}}}}dx=\int\limits_{0}^{\pi }{1}dx
we get [x]0π[x]_{0}^{\pi }
Putting the limits, we get answer π0\pi -0 , hence answer is π\pi

Note: Integral like this 02π11+esinxdx\int\limits_{0}^{2\pi }{\dfrac{1}{1+{{e}^{\sin x}}}}dx (we have sinx\sin x in place of x ) can never be solved straight , so always try to use property of definite integrals at first for example abf(x)±g(x)=abf(x)±abg(x)\int\limits_{a}^{b}{f(x)\pm g(x)}=\int\limits_{a}^{b}{f(x)\pm \int\limits_{a}^{b}{g(x)}} and acf(x)=abf(x)+bcf(x)\int\limits_{a}^{c}{f(x)=\int\limits_{a}^{b}{f(x)+\int\limits_{b}^{c}{f(x)}}}
Then it automatically resolves into some simple problem and can be solved easily, the same as we did in this question.