Solveeit Logo

Question

Question: Evaluate the given integral \(\int{\left( \sqrt{\dfrac{\cos x}{x}}-\sqrt{\dfrac{x}{\cos x}}\sin x \r...

Evaluate the given integral (cosxxxcosxsinx)dx\int{\left( \sqrt{\dfrac{\cos x}{x}}-\sqrt{\dfrac{x}{\cos x}}\sin x \right)dx}
a)xcosx+C b)xcosx+C c)2xcosx+C d)C2xcosx \begin{aligned} & a)-\sqrt{x\cos x}+C \\\ & b)\sqrt{x\cos x}+C \\\ & c)2\sqrt{x\cos x}+C \\\ & d)C-2\sqrt{x\cos x} \\\ \end{aligned}

Explanation

Solution

First we will write the expression inside integral in the form of pq\dfrac{p}{q} by cross multiplication. Then we know that (f.g)=fg+gf(f.g)'=f'g+g'f hence we can use this formula to simplify the numerator. Then we will use a method of substitution to solve the integration.

Complete step by step answer:
Now first consider (cosxxxcosxsinx)dx\int{\left( \sqrt{\dfrac{\cos x}{x}}-\sqrt{\dfrac{x}{\cos x}}\sin x \right)dx}
Let us say the value of this integral is I, then we have I=(cosxxxcosxsinx)dxI=\int{\left( \sqrt{\dfrac{\cos x}{x}}-\sqrt{\dfrac{x}{\cos x}}\sin x \right)dx}
Rearranging the terms we get I=(cosxxxcosxsinx)dxI=\int{\left( \dfrac{\sqrt{\cos x}}{\sqrt{x}}-\dfrac{\sqrt{x}}{\sqrt{\cos x}}\sin x \right)dx}
Cross multiplying the terms we get,
I=(cosx.cosxxxsinxxcosx)dxI=\int{\left( \dfrac{\sqrt{\cos x}.\sqrt{\cos x}-\sqrt{x}\sqrt{x}\sin x}{\sqrt{x\cos x}} \right)dx}
Now we know that for any a a.a=a\sqrt{a}.\sqrt{a}=a
Hence, we can write the above equation as
I=(cosxxsinxxcosx)dx..................(1)I=\int{\left( \dfrac{\cos x-x\sin x}{\sqrt{x\cos x}} \right)dx}..................(1)
Now we will try to simplify the numerator.
Consider the numerator cosxxsinx\cos x-x\sin x
We know that d(cosx)dx=sinx\dfrac{d(\cos x)}{dx}=-\sin x and d(x)dx=1\dfrac{d(x)}{dx}=1
Now substituting this in equation (1) we get
I=(cosx(d(x)dx)+x(d(cosx)dx)xcosx)dx.I=\int{\left( \dfrac{\cos x\left( \dfrac{d(x)}{dx} \right)+x\left( \dfrac{d(\cos x)}{dx} \right)}{\sqrt{x\cos x}} \right)dx}.
But we know that f(x)g(x)+g(x)f(x)=d(f(x).g(x))dxf(x)g'(x)+g(x)f'(x)=\dfrac{d(f(x).g(x))}{dx}
Hence we will use this to get
I=((d(x.cosx)dx)xcosx)dx.I=\int{\left( \dfrac{\left( \dfrac{d(x.\cos x)}{dx} \right)}{\sqrt{x\cos x}} \right)dx}.
Now cancelling dx we get from the denominator and the numerator we get

& I=\int{\left( \dfrac{\left( \dfrac{d(x.\cos x)}{1} \right)}{\sqrt{x\cos x}} \right)} \\\ & I=\int{\left( \dfrac{d(x\cos x)}{\sqrt{x\cos x}} \right)} \\\ \end{aligned}$$ Now we will solve this by method of integration. Hence, to do so let us substitute x.cosx as t. Hence we get $I=\int{\dfrac{dt}{\sqrt{t}}}$ Now we know that $\dfrac{1}{\sqrt{t}}={{t}^{-\dfrac{1}{2}}}$ Hence we have $I=\int{{{t}^{-\dfrac{1}{2}}}}dt$ Now integration of ${{x}^{n}}=\dfrac{{{x}^{n+1}}}{n+1}$+ C Hence we get $I=\int{{{t}^{-\dfrac{1}{2}}}}dt=\dfrac{{{t}^{1-\dfrac{1}{2}}}}{1-\dfrac{1}{2}}+C=2{{t}^{\dfrac{1}{2}}}+C$ Hence we have $I=2{{t}^{\dfrac{1}{2}}}+C$ Now we know that ${{t}^{\dfrac{1}{2}}}=\sqrt{t}$ hence using this we get $I=2\sqrt{t}+C$ Now let us substitute the value of t as x.cosx Hence we get $I=2\sqrt{x\cos x}+C$ **Option d is the correct option** **Note:** Note that dx in our cancels out and the variable of integration changes to t. While taking differentiation of cosx note that it is – sinx and not just sinx. Also in the end do not forget to substitute the value of t and add constant since this is an indefinite integration.