Solveeit Logo

Question

Question: Evaluate the given integral \(\int{\left( {{\sec }^{n}}x.\tan x \right)dx}\)...

Evaluate the given integral (secnx.tanx)dx\int{\left( {{\sec }^{n}}x.\tan x \right)dx}

Explanation

Solution

For solving questions of this type we should have the integrations and derivatives basic formulas in our mind otherwise we will face difficulties. Here in this question we will assume secx=t\sec x=t and use the following two formulae of differentiation and integrations as ddxsecx=secx.tanx\dfrac{d}{dx}\sec x=\sec x.\tan x and xndx=xn+1n+1+C\int{{{x}^{n}}}dx=\dfrac{{{x}^{n+1}}}{n+1}+C for n1n\ne 1. And perform further simplifications in order to obtain the answer.

Complete step-by-step solution
Let us assume that secx=t\sec x=t
By differentiating this on both sides we will get
secxtanxdx=dt\sec x\tan xdx=dt
Since we know thatddxsecx=secx.tanx\dfrac{d}{dx}\sec x=\sec x.\tan x
So we can simply write this as
(secnx.tanx)dx=secn1x(secxtanx)dx\int{\left( {{\sec }^{n}}x.\tan x \right)dx=}\int{{{\sec }^{n-1}}x\left( \sec x\tan x \right)dx}
This can be further simply written by using the assumption we madesecx=t\sec x=tas
secn1x(secxtanx)dx=tn1.dt\int{{{\sec }^{n-1}}x\left( \sec x\tan x \right)dx}=\int{{{t}^{n-1}}.dt}
As we know the formula xndx=xn+1n+1+C\int{{{x}^{n}}}dx=\dfrac{{{x}^{n+1}}}{n+1}+C for n1n\ne -1
By using this secn1x(secxtanx)dx=tn1.dt\int{{{\sec }^{n-1}}x\left( \sec x\tan x \right)dx}=\int{{{t}^{n-1}}.dt} this can be further simplified as
tn1.dt=tnn+C\int{{{t}^{n-1}}.dt}=\dfrac{{{t}^{n}}}{n}+C
By again substituting the value of secx=t\sec x=t that we assumed before we will get
tnn+C=secnxn+C\dfrac{{{t}^{n}}}{n}+C=\dfrac{{{\sec }^{n}}x}{n}+C
Hence we can conclude that (secnx.tanx)dx=secnxn+C\int{\left( {{\sec }^{n}}x.\tan x \right)dx}=\dfrac{{{\sec }^{n}}x}{n}+C

Note: While solving this question we should note that xndx=xn+1n+1+C\int{{{x}^{n}}}dx=\dfrac{{{x}^{n+1}}}{n+1}+C for n1n\ne -1
For n=1n=-1we have a different formulae that isx1dx=logx+C\int{{{x}^{-1}}}dx=\log x+C. And let us discuss one another point that the letter “C” which we are using often is a constant, this is a tricky point many times forgotten. Let us discuss some more formulae of trigonometric differential and integration functions that are of sine and cosine and secant and cosecant and tangent and cotangent functions of angles, their integrations and their differ nations respectively.
ddxsinx=cosx&ddxcosx=sinx&ddxtanx=sec2x&ddxcotx=cosec2x\dfrac{d}{dx}\sin x=\cos x\And \dfrac{d}{dx}\cos x=-\sin x\And \dfrac{d}{dx}\tan x={{\sec }^{2}}x\And \dfrac{d}{dx}\cot x=-\cos e{{c}^{2}}x
and ddxcosecx=cosecxcotx&ddxsecx=secxtanx\dfrac{d}{dx}\cos ecx=-\cos ecx\cot x\And \dfrac{d}{dx}\sec x=\sec x\tan x
Formulas’ for integration are: sinxdx=cosx+C&cosxdx=sinx+C&tanxdx=log(cosx)+C\int{\sin xdx}=-\cos x+C\And \int{\cos x}dx=\sin x+C\And \int{\tan x}dx=-\log \left( \cos x \right)+C
And cosecxdx=log(cosecxcotx)+C&secxdx=log(secx+tanx)+C&cotxdx=log(sinx)+C\int{\cos ecxdx}=-\log \left( \cos ecx-\cot x \right)+C\And \int{\sec x}dx=\log \left( \sec x+\tan x \right)+C\And \int{\cot x}dx=\log \left( \sin x \right)+CLet us recall some more trigonometric basic formulae they are sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1and cosecx=1sinx\cos ecx=\dfrac{1}{\sin x} and secx=1cosx\sec x=\dfrac{1}{\cos x}and tanx=sinxcosx\tan x=\dfrac{\sin x}{\cos x}.