Solveeit Logo

Question

Question: Evaluate the given integral \[\int{\dfrac{{{\sec }^{2}}x}{\cos e{{c}^{2}}x}}.dx\]...

Evaluate the given integral
sec2xcosec2x.dx\int{\dfrac{{{\sec }^{2}}x}{\cos e{{c}^{2}}x}}.dx

Explanation

Solution

Hint: Apply basic trigonometric formula and make the given expression in terms of tan2x{{\tan }^{2}}x. Thus use the trigonometric formula of tan2x{{\tan }^{2}}x and find the integral of the expression obtained.

Complete step-by-step answer:

Given to us the integral, which we need to evaluate. Let us take the integral as equal to II.
I=sec2xcosec2x.dx\therefore I=\int{\dfrac{{{\sec }^{2}}x}{\cos e{{c}^{2}}x}}.dx \to (1)
We know that secx=1cosx\sec x=\dfrac{1}{\cos x}.
Similarly cosecx=1sinx\operatorname{cosec}x=\dfrac{1}{\sin x}.
Now apply the values of secx\sec x and cosecx\operatorname{cosec}x in equation (1)
This II change to,
I=1cos2x1sinx2.dxI=\int{\dfrac{\dfrac{1}{{{\cos }^{2}}x}}{\dfrac{1}{\sin {{x}^{2}}}}}.dx
Now this is of the formabcd\dfrac{\dfrac{a}{b}}{\dfrac{c}{d}}. We can rewrite it as,
ab×dc\dfrac{a}{b}\times \dfrac{d}{c}, where a=1,b=cos2x,c=1,d=sin2xa=1,b={{\cos }^{2}}x,c=1,d={{\sin }^{2}}x.
Thus we can write it as,

& I=\int{\left( \dfrac{1}{{{\cos }^{2}}x} \right)}.\left( \dfrac{{{\sin }^{2}}x}{1} \right) \\\ & \\\ & I=\int{\dfrac{{{\sin }^{2}}x}{{{\cos }^{2}}x}}.dx\text{ }~\to (2) \\\ \end{aligned}$$ We know the basic trigonometric formulas that is $$\dfrac{\sin x}{\cos x}=\tan x$$. Thus equation (2) change to $$I=\int{{{\tan }^{2}}x.dx}$$ We know that $$\begin{aligned} & {{\sec }^{2}}x-{{\tan }^{2}}x=1 \\\ & \\\ & \therefore {{\tan }^{2}}x={{\sec }^{2}}x-1 \\\ \end{aligned}$$ Thus put $${{\tan }^{2}}x={{\sec }^{2}}x-1$$ $$\therefore I=\int{\left( {{\sec }^{2}}x-1 \right)dx}$$ $$=\int{{{\sec }^{2}}x.dx}-\int{1.dx=\int{{{\sec }^{2}}x.dx}-\int{{{x}^{0}}}}.dx$$ $$\to (3)$$ We know that $$\int{{{\sec }^{2}}x.dx=\tan x}$$ We know that $${{x}^{0}}=1$$ Similarly $$\int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n+1}}+c$$ $$I=\int{{{\sec }^{2}}x.dx-\int{{{x}^{0}}.dx}}$$ $$=\tan x-\dfrac{{{x}^{0+1}}}{0+1}+c$$ $$=\tan x-\dfrac{{{x}^{1}}}{1}+c$$ $$I=\tan x-x+c$$ Thus we got$$\int{\dfrac{{{\sec }^{2}}x}{\cos e{{c}^{2}}x}}.dx=\tan x-x+c$$. Hence we have solved the integral. Note: We have basic trigonometric formulas to solve this particular question. You should remember them or else you won’t be able to solve them. Here we took $${{\tan }^{2}}x={{\sec }^{2}}x-1$$ in order to find the integral of $${{\tan }^{2}}x$$. There is no direct integration for $${{\tan }^{2}}x$$, thus converting in terms of $${{\sec }^{2}}x$$.