Solveeit Logo

Question

Question: Evaluate the given integral \(\int {\dfrac{1}{{{x^2} + 16}}dx} \)...

Evaluate the given integral 1x2+16dx\int {\dfrac{1}{{{x^2} + 16}}dx}

Explanation

Solution

Hint: - Here we put into formula to solve easily(1a2+x2dx=1atan1xa+c)\left( {\int {\dfrac{1}{{{a^2} + {x^2}}}dx = \dfrac{1}{a}{{\tan }^{ - 1}}\dfrac{x}{a} + c} } \right).

1x2+16dx \int {\dfrac{1}{{{x^2} + 16}}dx} {\text{ }}
We will use a substitution method to solve this problem, you may put a direct formula and get an answer.
Put x = 4tanθx{\text{ = 4tan}}\theta
Differentiate with respect toxx.
dx=4sec2θdθdx = 4{\sec ^2}\theta d\theta
Now,
dx16+x2=4sec2θdθ16+16tan2θ=4sec2θdθ16(1+tan2θ)\int {\dfrac{{dx}}{{16 + {x^2}}}} = \int {\dfrac{{4{{\sec }^2}\theta d\theta }}{{16 + 16{{\tan }^2}\theta }} = \int {\dfrac{{4{{\sec }^2}\theta d\theta }}{{16\left( {1 + {{\tan }^2}\theta } \right)}}} }
(1+tan2θ=sec2θ)\left( {\because 1 + {{\tan }^2}\theta = {{\sec }^2}\theta } \right)
So, after cancel out, we get
14dθ=14θ+c=14tan1x4+c\Rightarrow \dfrac{1}{4}\int {d\theta = \dfrac{1}{4}\theta + c = } \dfrac{1}{4}{\tan ^{ - 1}}\dfrac{x}{4} + c (x=4tanθ θ=tan1x4 )\left( \begin{gathered} \because x = 4\tan \theta \\\ \therefore \theta = {\tan ^{ - 1}}\dfrac{x}{4} \\\ \end{gathered} \right)
Therefore the required answer is 14tan1x4+c\dfrac{1}{4}{\tan ^{ - 1}}\dfrac{x}{4} + c
Note: - Whenever we face such type of integral question, we have to use substitution method to solve easily or this question can be solve by using direct formula(1a2+x2dx=1atan1xa+c)\left( {\int {\dfrac{1}{{{a^2} + {x^2}}}dx = \dfrac{1}{a}{{\tan }^{ - 1}}\dfrac{x}{a} + c} } \right).