Solveeit Logo

Question

Question: Evaluate the given indefinite integral: \(\int{\dfrac{\sin x}{\sin x-\cos x}dx}\)? (a) \(\dfrac{1}...

Evaluate the given indefinite integral: sinxsinxcosxdx\int{\dfrac{\sin x}{\sin x-\cos x}dx}?
(a) 12log(sinxcosx)+x+c\dfrac{1}{2}\log \left( \sin x-\cos x \right)+x+c
(b) 12(log(sinxcosx)+x)+c\dfrac{1}{2}\left( \log \left( \sin x-\cos x \right)+x \right)+c
(c) 12log(cosxsinx)+x+c\dfrac{1}{2}\log \left( \cos x-\sin x \right)+x+c
(d) 12(log(cosxsinx)+x)+c\dfrac{1}{2}\left( \log \left( \cos x-\sin x \right)+x \right)+c

Explanation

Solution

We start solving the problem by assigning the variable for the given indefinite integral. We then make the necessary arrangements to make it as a sum of two integrals. We then solve each integral separately and then add them together at last. We solve the first integral by using the property that adx=ax+C\int{adx}=ax+C, where C is an arbitrary constant. We then solve the second integral by using the facts that d(sinx)=cosxdxd\left( \sin x \right)=\cos xdx, d(cosx)=sinxdxd\left( \cos x \right)=-\sin xdx and 1xdx=logx+C\int{\dfrac{1}{x}dx}=\log x+C, where C is an arbitrary constant. We then add both the obtained integrals to get the required result.

Complete step-by-step answer:
According to the problem, we are asked to evaluate the given indefinite integral sinxsinxcosxdx\int{\dfrac{\sin x}{\sin x-\cos x}dx}.
Let us assume I=sinxsinxcosxdxI=\int{\dfrac{\sin x}{\sin x-\cos x}dx}.
I=122sinxsinxcosxdx\Rightarrow I=\dfrac{1}{2}\int{\dfrac{2\sin x}{\sin x-\cos x}dx}.
I=122sinxcosx+cosxsinxcosxdx\Rightarrow I=\dfrac{1}{2}\int{\dfrac{2\sin x-\cos x+\cos x}{\sin x-\cos x}dx}.
I=12sinxcosx+sinx+cosxsinxcosxdx\Rightarrow I=\dfrac{1}{2}\int{\dfrac{\sin x-\cos x+\sin x+\cos x}{\sin x-\cos x}dx}.
I=12sinxcosxsinxcosxdx+12sinx+cosxsinxcosxdx\Rightarrow I=\dfrac{1}{2}\int{\dfrac{\sin x-\cos x}{\sin x-\cos x}dx}+\dfrac{1}{2}\int{\dfrac{\sin x+\cos x}{\sin x-\cos x}dx}.
Let us assume sinxcosxsinxcosxdx=I1\int{\dfrac{\sin x-\cos x}{\sin x-\cos x}dx}={{I}_{1}} and sinx+cosxsinxcosxdx=I2\int{\dfrac{\sin x+\cos x}{\sin x-\cos x}dx}={{I}_{2}}.
I=12I1+12I2\Rightarrow I=\dfrac{1}{2}{{I}_{1}}+\dfrac{1}{2}{{I}_{2}} ---(1).
Let us first solve I1{{I}_{1}}, I2{{I}_{2}} and then substitute the results in equation (1).
Now, let us solve for I1{{I}_{1}}.
So, we have I1=sinxcosxsinxcosxdx{{I}_{1}}=\int{\dfrac{\sin x-\cos x}{\sin x-\cos x}dx}.
I1=1dx\Rightarrow {{I}_{1}}=\int{1dx}.
We know that adx=ax+C\int{adx}=ax+C, where C is an arbitrary constant.
I1=x+c1\Rightarrow {{I}_{1}}=x+{{c}_{1}} ---(2).
Now, let us solve for I2{{I}_{2}}.
So, we have I2=sinx+cosxsinxcosxdx{{I}_{2}}=\int{\dfrac{\sin x+\cos x}{\sin x-\cos x}dx} ---(3).
Let us assume sinxcosx=t\sin x-\cos x=t ---(4). Let us apply differential on both sides.
So, we get d(sinxcosx)=dtd\left( \sin x-\cos x \right)=dt.
We know that d(ab)=dadbd\left( a-b \right)=da-db.
d(sinx)d(cosx)=dt\Rightarrow d\left( \sin x \right)-d\left( \cos x \right)=dt.
We know that d(sinx)=cosxdxd\left( \sin x \right)=\cos xdx and d(cosx)=sinxdxd\left( \cos x \right)=-\sin xdx.
(cosxdx)(sinxdx)=dt\Rightarrow \left( \cos xdx \right)-\left( -\sin xdx \right)=dt.
(cosx+sinx)dx=dt\Rightarrow \left( \cos x+\sin x \right)dx=dt ---(5).
Let us substitute equations (4) and (5) in equation (3).
So, we get I2=1tdt{{I}_{2}}=\int{\dfrac{1}{t}dt}.
We know that 1xdx=logx+C\int{\dfrac{1}{x}dx}=\log x+C, where C is an arbitrary constant.
I2=logt+c2\Rightarrow {{I}_{2}}=\log t+{{c}_{2}}.
From equation (4), we have t=sinxcosxt=\sin x-\cos x.
I2=log(sinxcosx)+c2\Rightarrow {{I}_{2}}=\log \left( \sin x-\cos x \right)+{{c}_{2}} ---(6).
Let us substitute equation (2) and (6) in equation (1).
So, we get I=12(x+c1)+12(log(sinxcosx)+c2)I=\dfrac{1}{2}\left( x+{{c}_{1}} \right)+\dfrac{1}{2}\left( \log \left( \sin x-\cos x \right)+{{c}_{2}} \right).
I=12(log(sinxcosx)+x)+12(c1+c2)\Rightarrow I=\dfrac{1}{2}\left( \log \left( \sin x-\cos x \right)+x \right)+\dfrac{1}{2}\left( {{c}_{1}}+{{c}_{2}} \right).
Since c1{{c}_{1}}, c2{{c}_{2}} are two arbitrary constants, we replace c1+c22\dfrac{{{c}_{1}}+{{c}_{2}}}{2} with cc.
I=12(log(sinxcosx)+x)+c\Rightarrow I=\dfrac{1}{2}\left( \log \left( \sin x-\cos x \right)+x \right)+c.
So, we have found the result of indefinite integral sinxsinxcosxdx\int{\dfrac{\sin x}{\sin x-\cos x}dx} as 12(log(sinxcosx)+x)+c\dfrac{1}{2}\left( \log \left( \sin x-\cos x \right)+x \right)+c.

So, the correct answer is “Option B”.

Note: We can see that the given problems contain a huge amount of calculation, so we need to perform each step to avoid calculation mistakes. We should not forget to add arbitrary constants while solving problems that consist of indefinite integrals. We can also make use of the formula dsinx+ecosxfsinx+gcosxdx=alog(fsinx+gsinx)+bx+C\int{\dfrac{d\sin x+e\cos x}{f\sin x+g\cos x}dx}=a\log \left( f\sin x+g\sin x \right)+bx+C, where a(ddx(fsinx+gcosx))+b(fsinx+gcosx)=dsinx+ecosxa\left( \dfrac{d}{dx}\left( f\sin x+g\cos x \right) \right)+b\left( f\sin x+g\cos x \right)=d\sin x+e\cos x. We can make use of the results cosx=1tan2(x2)1+tan2(x2)\cos x=\dfrac{1-{{\tan }^{2}}\left( \dfrac{x}{2} \right)}{1+{{\tan }^{2}}\left( \dfrac{x}{2} \right)} and sinx=2tan(x2)1+tan2(x2)\sin x=\dfrac{2\tan \left( \dfrac{x}{2} \right)}{1+{{\tan }^{2}}\left( \dfrac{x}{2} \right)} to get the required result.