Solveeit Logo

Question

Question: Evaluate the given indefinite integral: \(\int{\dfrac{{{\sin }^{2}}x-{{\cos }^{2}}x}{{{\sin }^{2}}x{...

Evaluate the given indefinite integral: sin2xcos2xsin2xcos2xdx\int{\dfrac{{{\sin }^{2}}x-{{\cos }^{2}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}dx}?

Explanation

Solution

We start solving the problem by converting the given integrand into subtraction of two different function and use the fact that (f(x)+g(x))dx=f(x)dx+g(x)dx\int{\left( f\left( x \right)+g\left( x \right) \right)dx}=\int{f\left( x \right)dx}+\int{g\left( x \right)dx}. We then use the facts that 1cosx=secx\dfrac{1}{\cos x}=\sec x, 1sinx=cosecx\dfrac{1}{\sin x}=\operatorname{cosec}x, sec2xdx=tanx+C\int{{{\sec }^{2}}xdx}=\tan x+C and cosec2xdx=cotx+C\int{{{\operatorname{cosec}}^{2}}xdx}=-\cot x+C to solve the problem further. We then use the facts cotx=1tanx\cot x=\dfrac{1}{\tan x}, 1+tan2x=sec2x1+{{\tan }^{2}}x={{\sec }^{2}}x, secx=1cosx\sec x=\dfrac{1}{\cos x}, tanx=sinxcosx\tan x=\dfrac{\sin x}{\cos x} and make necessary calculations to get the required answer.

Complete step-by-step solution
According to the problem, we need to find the solution for the given indefinite integral sin2xcos2xsin2xcos2xdx\int{\dfrac{{{\sin }^{2}}x-{{\cos }^{2}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}dx}.
Let us assume the integral be I. So, we get I=sin2xcos2xsin2xcos2xdxI=\int{\dfrac{{{\sin }^{2}}x-{{\cos }^{2}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}dx}.
I=(sin2xsin2xcos2xcos2xsin2xcos2x)dx\Rightarrow I=\int{\left( \dfrac{{{\sin }^{2}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}-\dfrac{{{\cos }^{2}}x}{{{\sin }^{2}}x{{\cos }^{2}}x} \right)dx} ------(1).
We know that (f(x)+g(x))dx=f(x)dx+g(x)dx\int{\left( f\left( x \right)+g\left( x \right) \right)dx}=\int{f\left( x \right)dx}+\int{g\left( x \right)dx}, we use this result in equation (1).
I=sin2xsin2xcos2xdxcos2xsin2xcos2xdx\Rightarrow I=\int{\dfrac{{{\sin }^{2}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}dx}-\int{\dfrac{{{\cos }^{2}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}dx}.
I=1cos2xdx1sin2xdx\Rightarrow I=\int{\dfrac{1}{{{\cos }^{2}}x}dx}-\int{\dfrac{1}{{{\sin }^{2}}x}dx} -----(2).
We know that 1cosx=secx\dfrac{1}{\cos x}=\sec x and 1sinx=cosecx\dfrac{1}{\sin x}=\operatorname{cosec}x, We use these results in equation (2).
I=sec2xdxcosec2xdx\Rightarrow I=\int{{{\sec }^{2}}xdx}-\int{{{\operatorname{cosec}}^{2}}xdx} ------(3).
We know that sec2xdx=tanx+C\int{{{\sec }^{2}}xdx}=\tan x+C and cosec2xdx=cotx+C\int{{{\operatorname{cosec}}^{2}}xdx}=-\cot x+C. We use these results in equation (3).
I=tanx(cotx)+C\Rightarrow I=\tan x-\left( -\cot x \right)+C.
I=tanx+cotx+C\Rightarrow I=\tan x+\cot x+C --------(4).
We know that cotx=1tanx\cot x=\dfrac{1}{\tan x}, we use this result in equation (4).
I=tanx+1tanx+C\Rightarrow I=\tan x+\dfrac{1}{\tan x}+C.
I=tan2x+1tanx+C\Rightarrow I=\dfrac{{{\tan }^{2}}x+1}{\tan x}+C ------(5).
We know that 1+tan2x=sec2x1+{{\tan }^{2}}x={{\sec }^{2}}x, we use this result in equation (5).
I=sec2xtanx+C\Rightarrow I=\dfrac{{{\sec }^{2}}x}{\tan x}+C -------(6).
We know that secx=1cosx\sec x=\dfrac{1}{\cos x} and tanx=sinxcosx\tan x=\dfrac{\sin x}{\cos x}. We use these results in equation (6).
I=1cos2xsinxcosx+C\Rightarrow I=\dfrac{\dfrac{1}{{{\cos }^{2}}x}}{\dfrac{\sin x}{\cos x}}+C.
I=1sinxcosx+C\Rightarrow I=\dfrac{1}{\sin x\cos x}+C.
I=22sinxcosx+C\Rightarrow I=\dfrac{2}{2\sin x\cos x}+C -------(7).
We know that sin2x=2sinxcosx\sin 2x=2\sin x\cos x, we use this result in equation (7).
I=2sin2x+C\Rightarrow I=\dfrac{2}{\sin 2x}+C.
So, we have found the result of indefinite integral sin2xcos2xsin2xcos2xdx\int{\dfrac{{{\sin }^{2}}x-{{\cos }^{2}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}dx} as 2sin2x+C\dfrac{2}{\sin 2x}+C.
\therefore sin2xcos2xsin2xcos2xdx=2sin2x+C\int{\dfrac{{{\sin }^{2}}x-{{\cos }^{2}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}dx}=\dfrac{2}{\sin 2x}+C.

Note: We should not forget to add the constant of integration C while doing the problems related to Indefinite integrals. We can alternatively solve the problem as shown below:
I=sin2xcos2xsin2xcos2xdx\Rightarrow I=\int{\dfrac{{{\sin }^{2}}x-{{\cos }^{2}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}dx}.
I=sin2xcos2x(sinxcosx)2dx\Rightarrow I=\int{\dfrac{{{\sin }^{2}}x-{{\cos }^{2}}x}{{{\left( \sin x\cos x \right)}^{2}}}dx}.
I=cos2x(sin2x2)2dx\Rightarrow I=\int{\dfrac{-\cos 2x}{{{\left( \dfrac{\sin 2x}{2} \right)}^{2}}}dx}.
I=4cos2xsin22xdx\Rightarrow I=\int{\dfrac{-4\cos 2x}{{{\sin }^{2}}2x}dx}.
Let us assume sin2x=t\sin 2x=t, we get dt=2cos2xdxdt=2\cos 2xdx.
I=2t2dt\Rightarrow I=\int{\dfrac{-2}{{{t}^{2}}}dt}.
I=2t2dt\Rightarrow I=\int{-2{{t}^{-2}}dt}.
We know that xndx=xn+1n+1+C\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}+C.
I=2×(t2+12+1)+C\Rightarrow I=-2\times \left( \dfrac{{{t}^{-2+1}}}{-2+1} \right)+C.
I=2×(t11)+C\Rightarrow I=-2\times \left( \dfrac{{{t}^{-1}}}{-1} \right)+C.
I=2t+C\Rightarrow I=\dfrac{2}{t}+C.
Now, let us substitute t=sin2xt=\sin 2x.
I=2sin2x+C\Rightarrow I=\dfrac{2}{\sin 2x}+C.