Question
Question: Evaluate the given indefinite integral: \(\int{\dfrac{{{\sin }^{2}}x-{{\cos }^{2}}x}{{{\sin }^{2}}x{...
Evaluate the given indefinite integral: ∫sin2xcos2xsin2x−cos2xdx?
Solution
We start solving the problem by converting the given integrand into subtraction of two different function and use the fact that ∫(f(x)+g(x))dx=∫f(x)dx+∫g(x)dx. We then use the facts that cosx1=secx, sinx1=cosecx, ∫sec2xdx=tanx+C and ∫cosec2xdx=−cotx+C to solve the problem further. We then use the facts cotx=tanx1, 1+tan2x=sec2x, secx=cosx1, tanx=cosxsinx and make necessary calculations to get the required answer.
Complete step-by-step solution
According to the problem, we need to find the solution for the given indefinite integral ∫sin2xcos2xsin2x−cos2xdx.
Let us assume the integral be I. So, we get I=∫sin2xcos2xsin2x−cos2xdx.
⇒I=∫(sin2xcos2xsin2x−sin2xcos2xcos2x)dx ------(1).
We know that ∫(f(x)+g(x))dx=∫f(x)dx+∫g(x)dx, we use this result in equation (1).
⇒I=∫sin2xcos2xsin2xdx−∫sin2xcos2xcos2xdx.
⇒I=∫cos2x1dx−∫sin2x1dx -----(2).
We know that cosx1=secx and sinx1=cosecx, We use these results in equation (2).
⇒I=∫sec2xdx−∫cosec2xdx ------(3).
We know that ∫sec2xdx=tanx+C and ∫cosec2xdx=−cotx+C. We use these results in equation (3).
⇒I=tanx−(−cotx)+C.
⇒I=tanx+cotx+C --------(4).
We know that cotx=tanx1, we use this result in equation (4).
⇒I=tanx+tanx1+C.
⇒I=tanxtan2x+1+C ------(5).
We know that 1+tan2x=sec2x, we use this result in equation (5).
⇒I=tanxsec2x+C -------(6).
We know that secx=cosx1 and tanx=cosxsinx. We use these results in equation (6).
⇒I=cosxsinxcos2x1+C.
⇒I=sinxcosx1+C.
⇒I=2sinxcosx2+C -------(7).
We know that sin2x=2sinxcosx, we use this result in equation (7).
⇒I=sin2x2+C.
So, we have found the result of indefinite integral ∫sin2xcos2xsin2x−cos2xdx as sin2x2+C.
∴ ∫sin2xcos2xsin2x−cos2xdx=sin2x2+C.
Note: We should not forget to add the constant of integration C while doing the problems related to Indefinite integrals. We can alternatively solve the problem as shown below:
⇒I=∫sin2xcos2xsin2x−cos2xdx.
⇒I=∫(sinxcosx)2sin2x−cos2xdx.
⇒I=∫(2sin2x)2−cos2xdx.
⇒I=∫sin22x−4cos2xdx.
Let us assume sin2x=t, we get dt=2cos2xdx.
⇒I=∫t2−2dt.
⇒I=∫−2t−2dt.
We know that ∫xndx=n+1xn+1+C.
⇒I=−2×(−2+1t−2+1)+C.
⇒I=−2×(−1t−1)+C.
⇒I=t2+C.
Now, let us substitute t=sin2x.
⇒I=sin2x2+C.