Solveeit Logo

Question

Question: Evaluate the given function \(\int {\log \left( {\log x} \right)dx + \int {{{\left( {\log x} \right)...

Evaluate the given function log(logx)dx+(logx)2dx\int {\log \left( {\log x} \right)dx + \int {{{\left( {\log x} \right)}^{ - 2}}dx} }
A.xlog(logx)+cx\log \left( {\log x} \right) + c
B.xlog(logx)+xlogx+cx\log \left( {\log x} \right) + \dfrac{x}{{\log x}} + c
C.xlog(logx)xlogx+cx\log \left( {\log x} \right) - \dfrac{x}{{\log x}} + c
D.logx+xlogx+c\log x + x\log x + c

Explanation

Solution

We will consider this in two part I=I1+I2I = {I_1} + {I_2} where I1=logy×eydy{I_1} = \int {\log y \times {e^y}dy} and I2=y2eydy{I_2} = \int {{y^{ - 2}}{e^y}dy} . For I1{I_1}we will use integration by part UVdx=UVdxdUdxVdxdx\int {UVdx = U\int {Vdx - \int {\dfrac{{dU}}{{dx}}\int {Vdxdx} } } } where U=logyU = \log y and V=eyV = {e^y}on solving we can eliminate I2{I_2} and get the value of II.

Complete step-by-step answer:
log(logx)dx+(logx)2dx\int {\log \left( {\log x} \right)dx + \int {{{\left( {\log x} \right)}^{ - 2}}dx} }
Substitute logx=y\log x = y, therefore x=eyx = {e^y}and dx=eydydx = {e^y}dy
Ilogy×eydy+y2eydyI \Rightarrow \int {\log y \times {e^y}dy + \int {{y^{ - 2}}{e^y}dy} }
Let I1=logy×eydy{I_1} = \int {\log y \times {e^y}dy} and I2=y2eydy{I_2} = \int {{y^{ - 2}}{e^y}dy}
For I1{I_1} we will use integration by part
I1=logyeydydlogydy(eydy)dy\Rightarrow {I_1} = \log y\int {{e^y}dy - \int {\dfrac{{d\log y}}{{dy}}\left( {\int {{e^y}dy} } \right)} } dy
I1=eylogy1yeydy\Rightarrow {I_1} = {e^y}\log y - \int {\dfrac{1}{y}{e^y}dy}
Again, using integration by part for 1yeydy\int {\dfrac{1}{y}{e^y}dy} we get
I1=eylogy1yeydy+d1ydy(eydy)dy\Rightarrow {I_1} = {e^y}\log y - \dfrac{1}{y}\int {{e^y}dy + \int {\dfrac{{d\dfrac{1}{y}}}{{dy}}\left( {\int {{e^y}dy} } \right)} } dy
I1=eylogyeyyy2eydy\Rightarrow {I_1} = {e^y}\log y - \dfrac{{{e^y}}}{y} - \int {{y^{ - 2}}{e^y}dy}
y2eydy=I2\int {{y^{ - 2}}{e^y}dy} = {I_2} assumed previously
So, I1=eylogyeyyI2+c \Rightarrow {I_1} = {e^y}\log y - \dfrac{{{e^y}}}{y} - {I_2} + c
Now, I=I1+I2I = {I_1} + {I_2}
Substituting the value of I1{I_1}
I=eylogyeyyI2+I2I = {e^y}\log y - \dfrac{{{e^y}}}{y} - {I_2} + {I_2}
I=eylogyeyy+cI = {e^y}\log y - \dfrac{{{e^y}}}{y} + c
Substituting x=eyx = {e^y} and logx=y\log x = y
I=elogxlog(logx)elogxlogx+cI = {e^{\log x}}\log \left( {\log x} \right) - \dfrac{{{e^{\log x}}}}{{\log x}} + c
I=xlog(logx)xlogx+c\therefore I = x\log \left( {\log x} \right) - \dfrac{x}{{\log x}} + c
Option C is answer

Note: In integration by part UVdx=UVdxdUdxVdxdx\int {UVdx = U\int {Vdx - \int {\dfrac{{dU}}{{dx}}\int {Vdxdx} } } } U and V decided according to ILATE rule
I=inverse trigonometric
L=logarithmic
A=algebra
T=trigonometric
E=exponential
According to ILATE the function which came 1st is said to be U and the next one is V. as seen in the above question I1=logy×eydy{I_1} = \int {\log y \times {e^y}dy} ,logy\log y is logarithmic function and ey{e^y} is exponential, according to ILATE, L came 1st so logy\log y is consider as U whereas ey{e^y} consider as V.