Solveeit Logo

Question

Question: Evaluate the given function and fill in the blanks: \(\int{\sqrt{\dfrac{\cos x-{{\cos }^{3}}x}{1-{{\...

Evaluate the given function and fill in the blanks: \int{\sqrt{\dfrac{\cos x-{{\cos }^{3}}x}{1-{{\cos }^{3}}x}}dx=\\_\\_\\_\\_\\_\\_\\_\\_\\_+C}
(A) 23cos1(sin32x)\left( \text{A} \right)\text{ }\dfrac{2}{3}{{\cos }^{-1}}\left( {{\sin }^{\dfrac{3}{2}}}x \right)
(B) 23tan1(cos32x)\left( B \right)\text{ }\dfrac{2}{3}{{\tan }^{-1}}\left( {{\cos }^{\dfrac{3}{2}}}x \right)
(C)23sin1(cos32x)\left( \text{C} \right)-\dfrac{2}{3}{{\sin }^{-1}}\left( {{\cos }^{\dfrac{3}{2}}}x \right)
(D) 23sin1(sin32x)\left( D \right)\text{ }\dfrac{2}{3}{{\sin }^{-1}}\left( {{\sin }^{\dfrac{3}{2}}}x \right)

Explanation

Solution

In this question we have been given with a question of indefinite integrals which we have to solve. We will first take cosx\cos x common in the numerator and convert it into the form of sinx\sin x. We will then use appropriate substitution to get the expression in a simplified manner. After using the formula for integrating we will get the required solution and we will check which option is the correct solution.

Complete step-by-step solution:
We have the integral given to us as:
cosxcos3x1cos3xdx\Rightarrow \int{\sqrt{\dfrac{\cos x-{{\cos }^{3}}x}{1-{{\cos }^{3}}x}}}dx
In the numerator, we can see that the term cosx\cos x is common therefore on taking it out, we get:
cosx(1cos2x)1cos3xdx\Rightarrow \int{\sqrt{\dfrac{\cos x\left( 1-{{\cos }^{2}}x \right)}{1-{{\cos }^{3}}x}}}dx
Now we know the trigonometric formula that sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1 which implies 1cos2x=sin2x1-{{\cos }^{2}}x={{\sin }^{2}}x therefore, on substituting it in the expression, we get:
cosx(sin2x)1cos3xdx\Rightarrow \int{\sqrt{\dfrac{\cos x\left( {{\sin }^{2}}x \right)}{1-{{\cos }^{3}}x}}}dx
Now in the numerator, we have a term in square under the square root therefore on taking it out, we get:
cosx1cos3x×sinxdx\Rightarrow \int{\sqrt{\dfrac{\cos x}{1-{{\cos }^{3}}x}}\times \sin xdx}
Now we know that square root can be written in the exponent form as a12{{a}^{\dfrac{1}{2}}} therefore the numerator can be written as:
cos12xsinx1cos3xdx\Rightarrow \int{\dfrac{{{\cos }^{\dfrac{1}{2}}}x\cdot \sin x}{\sqrt{1-{{\cos }^{3}}x}}dx}
Now the term cos3x{{\cos }^{3}}x in the denominator can be written as (cos32x)2{{\left( {{\cos }^{\dfrac{3}{2}}}x \right)}^{2}} because according to the law of exponents nothing it being changed.
On substituting, we get:
cos12xsinx1(cos32x)2dx\Rightarrow \int{\dfrac{{{\cos }^{\dfrac{1}{2}}}x\cdot \sin x}{\sqrt{1-{{\left( {{\cos }^{\dfrac{3}{2}}}x \right)}^{2}}}}dx}
Now on substituting t=cos32xt={{\cos }^{\dfrac{3}{2}}}x
On differentiating, we get dt=32cos12x(sinx)dxdt=\dfrac{3}{2}{{\cos }^{\dfrac{1}{2}}}x\left( -\sin x \right)dx
On rearranging the terms, we get 23dt=cos12xsinxdx-\dfrac{2}{3}dt={{\cos }^{\dfrac{1}{2}}}x\sin xdx.
On substituting it in the expression, we get:
23dt1t2\Rightarrow -\dfrac{2}{3}\int{\dfrac{dt}{\sqrt{1-{{t}^{2}}}}}
Now we know that 1a2x2=sin1(xa)+C\int{\dfrac{1}{\sqrt{{{a}^{2}}-{{x}^{2}}}}={{\sin }^{-1}}\left( \dfrac{x}{a} \right)}+C therefore on integrating, we get:
23sin1(t1)+C\Rightarrow -\dfrac{2}{3}{{\sin }^{-1}}\left( \dfrac{t}{1} \right)+C
On resubstituting the value of tt, we get:
23sin1(cos32x)+C\Rightarrow -\dfrac{2}{3}{{\sin }^{-1}}\left( {{\cos }^{\dfrac{3}{2}}}x \right)+C, which is the required solution therefore the correct option is (C)\left( C \right).

Note: In this question we used the substitution method to solve the integral. It is to be remembered that in an indefinite integral there are no limiting conditions. It is also to be remembered that integration and derivatives are opposite of each other. If the integration of a term aa is bb, then the derivative of the term bb will be aa.