Solveeit Logo

Question

Question: Evaluate the given expression : \(\mathop {\lim }\limits_{x \to 2} \dfrac{{{x^3} - 6{x^2} + 11x - 6}...

Evaluate the given expression : limx2x36x2+11x6x26x+8\mathop {\lim }\limits_{x \to 2} \dfrac{{{x^3} - 6{x^2} + 11x - 6}}{{{x^2} - 6x + 8}} .

Explanation

Solution

It is given in the question that Evaluate limx2x36x2+11x6x26x+8\mathop {\lim }\limits_{x \to 2} \dfrac{{{x^3} - 6{x^2} + 11x - 6}}{{{x^2} - 6x + 8}} .
Firstly, we will pass the limit to check whether the given question is the form of 00\dfrac{0}{0} or \dfrac{\infty }{\infty } . If this is the case then differentiate both the numerator and denominator and pass the limit to get the required answer.

Complete step-by-step answer:
It is given in the question that Evaluate limx2x36x2+11x6x26x+8\mathop {\lim }\limits_{x \to 2} \dfrac{{{x^3} - 6{x^2} + 11x - 6}}{{{x^2} - 6x + 8}}.
Now, pass the limit in the equation, we get,
Therefore, 236(2)2+11(2)6226(2)+8\dfrac{{{2^3} - 6{{\left( 2 \right)}^2} + 11\left( 2 \right) - 6}}{{{2^2} - 6\left( 2 \right) + 8}}
=86(4)+226412+8= \dfrac{{8 - 6\left( 4 \right) + 22 - 6}}{{4 - 12 + 8}}
=824+226412+8= \dfrac{{8 - 24 + 22 - 6}}{{4 - 12 + 8}}
=00= \dfrac{0}{0}
Since, we got the answer of limx2x36x2+11x6x26x+8\mathop {\lim }\limits_{x \to 2} \dfrac{{{x^3} - 6{x^2} + 11x - 6}}{{{x^2} - 6x + 8}} after passing the limit as 00\dfrac{0}{0} . So, we will differentiate both the numerator and denominator then pass the limit.
=limx2(ddx(x36x2+11x6)ddx(x26x+8))= \mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{\dfrac{d}{{dx}}\left( {{x^3} - 6{x^2} + 11x - 6} \right)}}{{\dfrac{d}{{dx}}\left( {{x^2} - 6x + 8} \right)}}} \right)
=limx2(ddxx3ddx6x2+ddx11xddx6ddxx2ddx6x+ddx8)= \mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{\dfrac{d}{{dx}}{x^3} - \dfrac{d}{{dx}}6{x^2} + \dfrac{d}{{dx}}11x - \dfrac{d}{{dx}}6}}{{\dfrac{d}{{dx}}{x^2} - \dfrac{d}{{dx}}6x + \dfrac{d}{{dx}}8}}} \right)
=limx2(3x212x+112x6)= \mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{3{x^2} - 12x + 11}}{{2x - 6}}} \right)
Now, passing the limit x=2x = 2
=(3(2)212(2)+112(2)6)= \left( {\dfrac{{3{{\left( 2 \right)}^2} - 12\left( 2 \right) + 11}}{{2\left( 2 \right) - 6}}} \right)
=(3(4)24+1146)= \left( {\dfrac{{3\left( 4 \right) - 24 + 11}}{{4 - 6}}} \right)
=(1224+1146)= \left( {\dfrac{{12 - 24 + 11}}{{4 - 6}}} \right)
=(12)= \left( {\dfrac{{ - 1}}{{ - 2}}} \right)
=12= \dfrac{1}{2}
Hence, limx2x36x2+11x6x26x+8=12\mathop {\lim }\limits_{x \to 2} \dfrac{{{x^3} - 6{x^2} + 11x - 6}}{{{x^2} - 6x + 8}} = \dfrac{1}{2}.

Note: The above question can be solved by using another method i.e. method of factorization.
It is given in the question that Evaluate limx2x36x2+11x6x26x+8\mathop {\lim }\limits_{x \to 2} \dfrac{{{x^3} - 6{x^2} + 11x - 6}}{{{x^2} - 6x + 8}} .
=limx2x3x25x2+5x+6x6x24x2x+8= \mathop {\lim }\limits_{x \to 2} \dfrac{{{x^3} - {x^2} - 5{x^2} + 5x + 6x - 6}}{{{x^2} - 4x - 2x + 8}}
=limx2x2(x1)5x(x1)+6(x1)x(x4)2(x4)= \mathop {\lim }\limits_{x \to 2} \dfrac{{{x^2}\left( {x - 1} \right) - 5x\left( {x - 1} \right) + 6\left( {x - 1} \right)}}{{x\left( {x - 4} \right) - 2\left( {x - 4} \right)}}
=limx2(x1)(x25x+6)(x4)(x2)= \mathop {\lim }\limits_{x \to 2} \dfrac{{\left( {x - 1} \right)\left( {{x^2} - 5x + 6} \right)}}{{\left( {x - 4} \right)\left( {x - 2} \right)}}
=limx2(x1)(x23x2x+6)(x4)(x2)= \mathop {\lim }\limits_{x \to 2} \dfrac{{\left( {x - 1} \right)\left( {{x^2} - 3x - 2x + 6} \right)}}{{\left( {x - 4} \right)\left( {x - 2} \right)}}
=limx2(x1)[x(x3)2(x3)](x4)(x2)= \mathop {\lim }\limits_{x \to 2} \dfrac{{\left( {x - 1} \right)\left[ {x\left( {x - 3} \right) - 2\left( {x - 3} \right)} \right]}}{{\left( {x - 4} \right)\left( {x - 2} \right)}}
=limx2(x1)(x2)(x3)(x4)(x2)= \mathop {\lim }\limits_{x \to 2} \dfrac{{\left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right)}}{{\left( {x - 4} \right)\left( {x - 2} \right)}}
=limx2(x1)(x3)(x4)= \mathop {\lim }\limits_{x \to 2} \dfrac{{\left( {x - 1} \right)\left( {x - 3} \right)}}{{\left( {x - 4} \right)}}
Now, pass the limit x=2x = 2 .
=(21)(23)(24)= \dfrac{{\left( {2 - 1} \right)\left( {2 - 3} \right)}}{{\left( {2 - 4} \right)}}
=1(1)(2)= \dfrac{{1\left( { - 1} \right)}}{{\left( { - 2} \right)}}
=12= \dfrac{1}{2}
Hence, limx2x36x2+11x6x26x+8=12\mathop {\lim }\limits_{x \to 2} \dfrac{{{x^3} - 6{x^2} + 11x - 6}}{{{x^2} - 6x + 8}} = \dfrac{1}{2}