Solveeit Logo

Question

Question: Evaluate the given expression: \(1 + \left( {{1^2} + {2^2}} \right) + \left( {{1^2} + {2^2} + {3^2...

Evaluate the given expression:
1+(12+22)+(12+22+32)+.....=1 + \left( {{1^2} + {2^2}} \right) + \left( {{1^2} + {2^2} + {3^2}} \right) + ..... =

Explanation

Solution

Hint: Here we can solve it by analyzing the problem and using summation on the general term. Try to convert the expression in the form of the sum of the square of the first n natural number. From there try to generalise the equation. Then apply these formula:

Sum of first n natural numbers, k=1nk=n(n+1)2\sum\limits_{k = 1}^n {k = \dfrac{{n\left( {n + 1} \right)}}{2}}

Sum of squares to first n natural numbers k=1nk2=n(n+1)(2n+1)6\sum\limits_{k = 1}^n {{k^2} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}}

Sum of cubes of first n natural numbers k=1nk3=[n(n+1)2]2=n2(n+1)24{\sum\limits_{k = 1}^n {{k^3} = \left[ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right]} ^2} = \dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{4}

Complete step-by-step answer:
Let sn=1+(12+22)+(12+22+32)+.....{s_n} = 1 + \left( {{1^2} + {2^2}} \right) + \left( {{1^2} + {2^2} + {3^2}} \right) + .....

By considering the above series carefully we can write the last term of this series as an=(12+22+32+.....+n2){a_n} = \left( {{1^2} + {2^2} + {3^2} + ..... + {n^2}} \right)
Where n is any natural number

Since we know that the sum of square of first n natural numbers i.e. 12+22+32+.....+n2=n(n+1)(2n+1)6{1^2} + {2^2} + {3^2} + ..... + {n^2} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}
an=n(n+1)(2n+1)6=n(2n2+3n+1)6=2n3+3n2+n6=n33+n22+n6\Rightarrow {a_n} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} = \dfrac{{n\left( {2{n^2} + 3n + 1} \right)}}{6} = \dfrac{{2{n^3} + 3{n^2} + n}}{6} = \dfrac{{{n^3}}}{3} + \dfrac{{{n^2}}}{2} + \dfrac{n}{6}

Also, the required sum of the given series Sn can be obtained by doing summation of any kth term where k varies from 1 to n. Therefore kth term can be obtained by replacing n by k in the expression of an, we get
ak=k33+k22+k6{a_k} = \dfrac{{{k^3}}}{3} + \dfrac{{{k^2}}}{2} + \dfrac{k}{6}
Sn=k=1nak=k=1n(k33+k22+k6)=k=1nk33+k=1nk22+k=1nk6\therefore {S_n} = \sum\limits_{k = 1}^n {{a_k} = \sum\limits_{k = 1}^n {\left( {\dfrac{{{k^3}}}{3} + \dfrac{{{k^2}}}{2} + \dfrac{k}{6}} \right)} } = \dfrac{{\sum\limits_{k = 1}^n {{k^3}} }}{3} + \dfrac{{\sum\limits_{k = 1}^n {{k^2}} }}{2} + \dfrac{{\sum\limits_{k = 1}^n k }}{6} …… (1)

As we know that
Sum of first n natural numbers, k=1nk=n(n+1)2\sum\limits_{k = 1}^n {k = \dfrac{{n\left( {n + 1} \right)}}{2}}
Sum of squares to first n natural numbers k=1nk2=n(n+1)(2n+1)6\sum\limits_{k = 1}^n {{k^2} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}}
Sum of cubes of first n natural numbers k=1nk3=[n(n+1)2]2=n2(n+1)24{\sum\limits_{k = 1}^n {{k^3} = \left[ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right]} ^2} = \dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{4}

Using above formulas equation (1) becomes
Sn=k=1nk33+k=1nk22+k=1nk6=n2(n+1)24×3+n(n+1)(2n+1)6×2+n(n+1)2×6=n2(n+1)212+n(n+1)(2n+1)12+n(n+1)12{S_n} = \dfrac{{\sum\limits_{k = 1}^n {{k^3}} }}{3} + \dfrac{{\sum\limits_{k = 1}^n {{k^2}} }}{2} + \dfrac{{\sum\limits_{k = 1}^n k }}{6} = \dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{{4 \times 3}} + \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{{6 \times 2}} + \dfrac{{n\left( {n + 1} \right)}}{{2 \times 6}} = \dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{{12}} + \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{{12}} + \dfrac{{n\left( {n + 1} \right)}}{{12}}
Sn=n(n+1)12[n(n+1)+2n+1+1]=n(n+1)12[n2+n+2n+2]=n(n+1)(n2+3n+2)12{S_n} = \dfrac{{n\left( {n + 1} \right)}}{{12}}\left[ {n\left( {n + 1} \right) + 2n + 1 + 1} \right] = \dfrac{{n\left( {n + 1} \right)}}{{12}}\left[ {{n^2} + n + 2n + 2} \right] = \dfrac{{n\left( {n + 1} \right)\left( {{n^2} + 3n + 2} \right)}}{{12}} …… (2)

Converting (n2+3n+2)\left( {{n^2} + 3n + 2} \right) into its factors, we can write
n2+3n+2=n2+n+2n+2=n(n+1)+2(n+1)=(n+1)(n+2){n^2} + 3n + 2 = {n^2} + n + 2n + 2 = n\left( {n + 1} \right) + 2\left( {n + 1} \right) = \left( {n + 1} \right)\left( {n + 2} \right)

Therefore equation (2) becomes
Sn=n(n+1)(n+1)(n+2)12=n(n+1)2+2(n+1)12{S_n} = \dfrac{{n\left( {n + 1} \right)\left( {n + 1} \right)\left( {n + 2} \right)}}{{12}} = \dfrac{{n{{\left( {n + 1} \right)}^2} + 2\left( {n + 1} \right)}}{{12}} where n is any natural number

Note: These types of problems can be solved by analyzing the given problem and finding any general term and then applying summation on the general term. Then using the formula of sum of first n natural numbers, sum of squares of first natural numbers and sum of the cube of the first n natural numbers.