Solveeit Logo

Question

Question: Evaluate the following trigonometric equation. \(\sin \theta .{\cos ^3}\theta - \cos \theta .{\sin...

Evaluate the following trigonometric equation.
sinθ.cos3θcosθ.sin3θ\sin \theta .{\cos ^3}\theta - \cos \theta .{\sin ^3}\theta is equal to?
A. 14sinθ B. sin4θ4 C. cos4θ4 D. cos4θ3  {\text{A}}{\text{. }}\dfrac{{ - 1}}{4}\sin \theta \\\ {\text{B}}{\text{. }}\dfrac{{\sin 4\theta }}{4} \\\ {\text{C}}{\text{. }}\dfrac{{\cos 4\theta }}{4} \\\ {\text{D}}{\text{. }}\dfrac{{\cos 4\theta }}{3} \\\

Explanation

Solution

Hint: For solving this complex equation first you have to take common whichever can be taken and then proceed using trigonometric results and shorten the equation as much as you can.

Complete step-by-step answer:
From given
sinθ.cos3θcosθ.sin3θ\sin \theta .{\cos ^3}\theta - \cos \theta .{\sin ^3}\theta
Take sinθ.cosθ\sin \theta .\cos \theta common then we get
sinθ.cosθ(cos2θsin2θ)\sin \theta .\cos \theta \left( {{{\cos }^2}\theta - {{\sin }^2}\theta } \right)
(cos2θ=cos2θsin2θ)\left( {\because \cos 2\theta = {{\cos }^2}\theta - {{\sin }^2}\theta } \right) (on multiplying and dividing by 2)
2sinθ.cosθ2(cos2θ)\dfrac{{2\sin \theta .\cos \theta }}{2}\left( {\cos 2\theta } \right)
(sin2θ=2sinθ.cosθ\because \sin 2\theta = 2\sin \theta .\cos \theta )
sin2θ.cos2θ2\dfrac{{\sin 2\theta .\cos 2\theta }}{2} (on multiplying and dividing 2 we get)
2.sin2θ.cos2θ2.2\dfrac{{2.\sin 2\theta .\cos 2\theta }}{{2.2}}
(sin4θ=2sin2θ.cos2θ)\left( {\because \sin 4\theta = 2\sin 2\theta .\cos 2\theta } \right)
=sin4θ4\dfrac{{\sin 4\theta }}{4}
Hence option B is the correct option.

Note: Whenever you get this type of question the key concept of solving is you have to shorten the complex equation using trigonometric results like (cos2θ=cos2θsin2θ)\left( {\cos 2\theta = {{\cos }^2}\theta - {{\sin }^2}\theta } \right)and use basic mathematics to proceed further.