Solveeit Logo

Question

Question: Evaluate the following \[{{\tan }^{-1}}\left( -\dfrac{1}{\sqrt{3}} \right)+{{\tan }^{-1}}\left( -\...

Evaluate the following
tan1(13)+tan1(3)+tan1(sin(π2)){{\tan }^{-1}}\left( -\dfrac{1}{\sqrt{3}} \right)+{{\tan }^{-1}}\left( -\sqrt{3} \right)+{{\tan }^{-1}}\left( \sin \left( -\dfrac{\pi }{2} \right) \right)

Explanation

Solution

Hint:First of all, use sin(θ)=sinθ\sin \left( -\theta \right)=-\sin \theta . Now use, tan1(x)=tan1x{{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}x in each term. Now find the angles at which tanθ=13,tanθ=3\tan \theta =\dfrac{1}{\sqrt{3}},\tan \theta =\sqrt{3} and tanθ=1\tan \theta =1 or the value of tan1(13),tan1(3){{\tan }^{-1}}\left( \dfrac{1}{\sqrt{3}} \right),{{\tan }^{-1}}\left( \sqrt{3} \right) and tan1(1){{\tan }^{-1}}\left( 1 \right) and substitute these in the given expression to get the required answer.

Complete step-by-step answer:
In this question, we have to find the value of the expression tan1(13)+tan1(3)+tan1(sin(π2)){{\tan }^{-1}}\left( -\dfrac{1}{\sqrt{3}} \right)+{{\tan }^{-1}}\left( -\sqrt{3} \right)+{{\tan }^{-1}}\left( \sin \left( -\dfrac{\pi }{2} \right) \right).
First of all, let us consider the expression given in the question,
E=tan1(13)+tan1(3)+tan1(sin(π2))E={{\tan }^{-1}}\left( -\dfrac{1}{\sqrt{3}} \right)+{{\tan }^{-1}}\left( -\sqrt{3} \right)+{{\tan }^{-1}}\left( \sin \left( -\dfrac{\pi }{2} \right) \right)
We know that sin(θ)=sinθ\sin \left( -\theta \right)=-\sin \theta . By using this in the above expression, we get,
E=tan1(13)+tan1(3)+tan1(sinπ2)E={{\tan }^{-1}}\left( -\dfrac{1}{\sqrt{3}} \right)+{{\tan }^{-1}}\left( -\sqrt{3} \right)+{{\tan }^{-1}}\left( -\sin \dfrac{\pi }{2} \right)
Also, we know that, tan1(x)=tan1x{{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}x. By using this in the above expression, we get,
E=tan1(13)+(tan13)+tan1(sinπ2)E=-{{\tan }^{-1}}\left( \dfrac{1}{\sqrt{3}} \right)+\left( -{{\tan }^{-1}}\sqrt{3} \right)+{{\tan }^{-1}}\left( -\sin \dfrac{\pi }{2} \right)
E=tan1(13)tan13tan1(sinπ2).....(i)E=-{{\tan }^{-1}}\left( \dfrac{1}{\sqrt{3}} \right)-{{\tan }^{-1}}\sqrt{3}-{{\tan }^{-1}}\left( \sin \dfrac{\pi }{2} \right).....\left( i \right)
Now, let us draw the table for trigonometric ratios of general angles.

From the above table, we get, sinπ2=1\sin \dfrac{\pi }{2}=1. By using this in equation (i), we get,
E=tan1(13)tan13tan1(1).....(ii)E=-{{\tan }^{-1}}\left( \dfrac{1}{\sqrt{3}} \right)-{{\tan }^{-1}}\sqrt{3}-{{\tan }^{-1}}\left( 1 \right).....\left( ii \right)
Also from the above table, we can see that
tan(π6)=13\tan \left( \dfrac{\pi }{6} \right)=\dfrac{1}{\sqrt{3}}
tan1(13)=π6\Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{\sqrt{3}} \right)=\dfrac{\pi }{6}
tan(π3)=3\tan \left( \dfrac{\pi }{3} \right)=\sqrt{3}
tan1(3)=π3\Rightarrow {{\tan }^{-1}}\left( \sqrt{3} \right)=\dfrac{\pi }{3}
tan(π4)=1\tan \left( \dfrac{\pi }{4} \right)=1
tan1(1)=π4\Rightarrow {{\tan }^{-1}}\left( 1 \right)=\dfrac{\pi }{4}
So by substituting the value of tan1(13),tan1(3){{\tan }^{-1}}\left( \dfrac{1}{\sqrt{3}} \right),{{\tan }^{-1}}\left( \sqrt{3} \right) and tan1(1){{\tan }^{-1}}\left( 1 \right) in equation (ii), we get, E=π6π3π4E=-\dfrac{\pi }{6}-\dfrac{\pi }{3}-\dfrac{\pi }{4}
By simplifying the above equation, we get,
E=(π6+π3+π4)E=-\left( \dfrac{\pi }{6}+\dfrac{\pi }{3}+\dfrac{\pi }{4} \right)
E=(2π+4π+3π)12E=\dfrac{-\left( 2\pi +4\pi +3\pi \right)}{12}
E=(9π12)E=-\left( \dfrac{9\pi }{12} \right)
E=3π4E=\dfrac{-3\pi }{4}
Hence, we get the value of tan1(13)+tan1(3)+tan1(sin(π2)){{\tan }^{-1}}\left( -\dfrac{1}{\sqrt{3}} \right)+{{\tan }^{-1}}\left( -\sqrt{3} \right)+{{\tan }^{-1}}\left( \sin \left( -\dfrac{\pi }{2} \right) \right) as 3π4\dfrac{-3\pi }{4}.

Note: In this question, some students make this mistake of taking tan1(x){{\tan }^{-1}}\left( -x \right) as πtan1(x)\pi -{{\tan }^{-1}}\left( x \right) like in case of cot1(x){{\cot }^{-1}}\left( -x \right) which is wrong because tan1(x)=tan1(x){{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}\left( x \right). Also in the case of inverse trigonometric functions, students must take care that the angle they take must lie in the range of respective functions to get the correct answer. Also, students should memorize the table for general trigonometric ratios.