Solveeit Logo

Question

Question: Evaluate the following \[{{\operatorname{cosec}}^{3}}{{30}^{o}}\cos {{60}^{o}}{{\tan }^{3}}{{45}^{...

Evaluate the following
cosec330ocos60otan345osin290osec245ocot30o{{\operatorname{cosec}}^{3}}{{30}^{o}}\cos {{60}^{o}}{{\tan }^{3}}{{45}^{o}}{{\sin }^{2}}{{90}^{o}}{{\sec }^{2}}{{45}^{o}}\cot {{30}^{o}}

Explanation

Solution

Hint:First of all, consider the expression given in the question. Now make the table for trigonometric ratios of general angles. Now, from that find the values of sin90o,tan45o,cosec30o,cos60o,sec30o\sin {{90}^{o}},\tan {{45}^{o}},\operatorname{cosec}{{30}^{o}},\cos {{60}^{o}},\sec {{30}^{o}} and cot30o\cot {{30}^{o}} and substitute these in the given expression to get the required answer.

Complete step-by-step answer:
In this question, we have to find the value of the expression
cosec330ocos60otan345osin290osec245ocot30o{{\operatorname{cosec}}^{3}}{{30}^{o}}\cos {{60}^{o}}{{\tan }^{3}}{{45}^{o}}{{\sin }^{2}}{{90}^{o}}{{\sec }^{2}}{{45}^{o}}\cot {{30}^{o}}
Let us consider the expression given in the question.
E=cosec330ocos60otan345osin290osec245ocot30o....(i)E={{\operatorname{cosec}}^{3}}{{30}^{o}}\cos {{60}^{o}}{{\tan }^{3}}{{45}^{o}}{{\sin }^{2}}{{90}^{o}}{{\sec }^{2}}{{45}^{o}}\cot {{30}^{o}}....\left( i \right)
Now, we have to find the values of sin90o,tan45o,cosec30o,cos60o,sec30o\sin {{90}^{o}},\tan {{45}^{o}},\operatorname{cosec}{{30}^{o}},\cos {{60}^{o}},\sec {{30}^{o}} and cot30o\cot {{30}^{o}}.
Let us make the table for trigonometric ratios of general angles like 0o,30o,45o,60o,90o{{0}^{o}},{{30}^{o}},{{45}^{o}},{{60}^{o}},{{90}^{o}} and find the required values.

From the above table, we get, cosec30o=2\operatorname{cosec}{{30}^{o}}=2. By substituting this in equation (i), we get,
E=(2)3cos60otan345osin290osec245ocot30oE={{\left( 2 \right)}^{3}}\cos {{60}^{o}}{{\tan }^{3}}{{45}^{o}}{{\sin }^{2}}{{90}^{o}}{{\sec }^{2}}{{45}^{o}}\cot {{30}^{o}}
Also from the above table, we get cos60o=12\cos {{60}^{o}}=\dfrac{1}{2}. By substituting this in the above equation, we get, E=(2)3(12)tan345osin290osec245ocot30oE={{\left( 2 \right)}^{3}}\left( \dfrac{1}{2} \right){{\tan }^{3}}{{45}^{o}}{{\sin }^{2}}{{90}^{o}}{{\sec }^{2}}{{45}^{o}}\cot {{30}^{o}}
From the table, we also get, tan45o=1\tan {{45}^{o}}=1. By substituting this in the above equation, we get,
E=(2)3(12)(1)3sin290osec245ocot30oE={{\left( 2 \right)}^{3}}\left( \dfrac{1}{2} \right){{\left( 1 \right)}^{3}}{{\sin }^{2}}{{90}^{o}}{{\sec }^{2}}{{45}^{o}}\cot {{30}^{o}}
From the table, we also get, sin90o=1\sin {{90}^{o}}=1. By substituting this in the above equation, we get,
E=(2)3(12)(1)3(1)2sec245ocot30oE={{\left( 2 \right)}^{3}}\left( \dfrac{1}{2} \right){{\left( 1 \right)}^{3}}{{\left( 1 \right)}^{2}}{{\sec }^{2}}{{45}^{o}}\cot {{30}^{o}}
From the table, we also get, sec45o=2\sec {{45}^{o}}=\sqrt{2}. By substituting this in the above equation, we get,
E=(2)3(12)(1)3(1)2(2)2cot30oE={{\left( 2 \right)}^{3}}\left( \dfrac{1}{2} \right){{\left( 1 \right)}^{3}}{{\left( 1 \right)}^{2}}{{\left( \sqrt{2} \right)}^{2}}\cot {{30}^{o}}
From the table, we also get, cot30o=3\cot {{30}^{o}}=\sqrt{3}. By substituting this in the above equation, we get,
E=(2)3(12)(1)3(1)2(2)2(3)E={{\left( 2 \right)}^{3}}\left( \dfrac{1}{2} \right){{\left( 1 \right)}^{3}}{{\left( 1 \right)}^{2}}{{\left( \sqrt{2} \right)}^{2}}\left( \sqrt{3} \right)
By simplifying the above equation, we get,
E=8×12×1×1×2×3E=8\times \dfrac{1}{2}\times 1\times 1\times 2\times \sqrt{3}
E=8×2×32E=\dfrac{8\times 2\times \sqrt{3}}{2}
E=83E=8\sqrt{3}
Hence, we get the value of the expression cosec330ocos60otan345osin290osec245ocot30o{{\operatorname{cosec}}^{3}}{{30}^{o}}\cos {{60}^{o}}{{\tan }^{3}}{{45}^{o}}{{\sin }^{2}}{{90}^{o}}{{\sec }^{2}}{{45}^{o}}\cot {{30}^{o}} as 838\sqrt{3}.

Note: In these types of questions, students are advised to remember the trigonometric table for general angles. In case if they can’t remember the whole table, they just need to remember the values of sinθ\sin \theta and cosθ\cos \theta at various angles like 0o,30o,60o,45o,{{0}^{o}},{{30}^{o}},{{60}^{o}},{{45}^{o}}, etc. and they can find all other trigonometric ratios using them. For example, in the above question, they can find cosec30o\operatorname{cosec}{{30}^{o}} by using 1sin30o,tan45o\dfrac{1}{\sin {{30}^{o}}},\tan {{45}^{o}} by sin45ocos45o,sec45o\dfrac{\sin {{45}^{o}}}{\cos {{45}^{o}}},\sec {{45}^{o}} by using 1cos45o\dfrac{1}{\cos {{45}^{o}}} and cot45o\cot {{45}^{o}} by using cos45osin45o\dfrac{\cos {{45}^{o}}}{\sin {{45}^{o}}}.