Question
Question: Evaluate the following limit \(\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\sqrt{2x+3}}{x+3}\)...
Evaluate the following limit
x→3limx+32x+3
Solution
Hint: Find Left Hand Limit and Right Hand Limit. Use x→a+limf(x)=h→0limf(a+h) and x→a−limf(x)=h→0limf(a−h). Hence check whether Left Hand Limit equals Right Hand Limit or not.
Hence check whether the limit exists or not.
Complete step-by-step solution -
Limit of a function: Limit of a function f(x) is said to be equal to a if at point x=b, for all ε>0, there exists a δ>0 such that ∣f(x)−a∣<ε|f(x)-a|
Properties of the limit of a function:
[1] If x→alimf(x) exists and x→alimg(x) exists, then so do the limits x→alimf(x)+g(x),x→alimf(x)g(x) and are equal to x→alimf(x)+x→alimg(x) and (x→alimf(x))(x→alimg(x)) respectively. If x→alimg(x)=0, then x→alimg(x)f(x) also exists and is equal to x→alimg(x)x→alimf(x).
[2] If the limit of a function exists, then it is unique.
Here f(x)=x+32x+3 and b = 3.
Claim: x→3limf(x)=21
Proof:
Consider g(x)=2x+3 and h(x)=x+3
Claim 1: x→3limg(x)=3
Observe that 2x+3−3=2x+3+32x+3−9=2x+3+32x−6=22x+3+3x−3
Since x≥0, we have
2x+3−3=22x+3+3x−3≤23x−3≤32∣x−3∣
Now for ε>0, choose δ=23ε, we have
Whenever ∣x−3∣<δ=23ε⇒32∣x−3∣<ε
Bit since 2x+3−3≤32∣x−3∣, we have
2x+3−3<ε
Hence whenever ∣x−3∣<δ, we have 2x+3−3<ε
Hence we have x→3lim2x+3=3
Claim 2: x→3limh(x)=6
Observe that ∣x+3−6∣=∣x−3∣
So if we choose δ=ε, we have ∀ε>0,∃δ=ε>0 such that ∣x+6−3∣<ε whenever ∣x−3∣<δ
Hence x→3limh(x)=6
Hence x→3limf(x)=x→3limh(x)x→3limg(x)=63=21
Hence proved.
Note: Alternatively, we have
x→3+limf(x)=h→0limh+3+32(h+3)+3=h→0limh+62h+9=0+62(0)+9=63=21 and x→3−limf(x)=h→0lim3−h+32(3−h)+3=h→0lim6−h9−2h=69−0=21
Hence LHL = RHL =21
Hence the limit exists and is equal to 21.