Solveeit Logo

Question

Question: Evaluate the following limit \(\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\sqrt{2x+3}}{x+3}\)...

Evaluate the following limit
limx32x+3x+3\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\sqrt{2x+3}}{x+3}

Explanation

Solution

Hint: Find Left Hand Limit and Right Hand Limit. Use limxa+f(x)=limh0f(a+h)\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,f\left( a+h \right) and limxaf(x)=limh0f(ah)\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,f\left( a-h \right). Hence check whether Left Hand Limit equals Right Hand Limit or not.
Hence check whether the limit exists or not.

Complete step-by-step solution -

Limit of a function: Limit of a function f(x) is said to be equal to a if at point x=b, for all ε>0\varepsilon >0, there exists a δ>0\delta >0 such that f(x)a<ε\left| f\left( x \right)-a \right|<\varepsilon |f(x)-a|
Properties of the limit of a function:
[1] If limxaf(x)\underset{x\to a}{\mathop{\lim }}\,f\left( x \right) exists and limxag(x)\underset{x\to a}{\mathop{\lim }}\,g\left( x \right) exists, then so do the limits limxaf(x)+g(x),limxaf(x)g(x)\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)+g\left( x \right),\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)g\left( x \right) and are equal to limxaf(x)+limxag(x)\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)+\underset{x\to a}{\mathop{\lim }}\,g\left( x \right) and (limxaf(x))(limxag(x))\left( \underset{x\to a}{\mathop{\lim }}\,f\left( x \right) \right)\left( \underset{x\to a}{\mathop{\lim }}\,g\left( x \right) \right) respectively. If limxag(x)0\underset{x\to a}{\mathop{\lim }}\,g\left( x \right)\ne 0, then limxaf(x)g(x)\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)} also exists and is equal to limxaf(x)limxag(x)\dfrac{\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)}{\underset{x\to a}{\mathop{\lim }}\,g\left( x \right)}.
[2] If the limit of a function exists, then it is unique.
Here f(x)=2x+3x+3f\left( x \right)=\dfrac{\sqrt{2x+3}}{x+3} and b = 3.
Claim: limx3f(x)=12\underset{x\to 3}{\mathop{\lim }}\,f\left( x \right)=\dfrac{1}{2}
Proof:
Consider g(x)=2x+3g\left( x \right)=\sqrt{2x+3} and h(x)=x+3h\left( x \right)=x+3
Claim 1: limx3g(x)=3\underset{x\to 3}{\mathop{\lim }}\,g\left( x \right)=3
Observe that 2x+33=2x+392x+3+3=2x62x+3+3=2x32x+3+3\left| \sqrt{2x+3}-3 \right|=\left| \dfrac{2x+3-9}{\sqrt{2x+3}+3} \right|=\left| \dfrac{2x-6}{\sqrt{2x+3}+3} \right|=2\left| \dfrac{x-3}{\sqrt{2x+3}+3} \right|
Since x0\sqrt{x}\ge 0, we have
2x+33=2x32x+3+32x3323x3\left| \sqrt{2x+3}-3 \right|=2\left| \dfrac{x-3}{\sqrt{2x+3}+3} \right|\le 2\left| \dfrac{x-3}{3} \right|\le \dfrac{2}{3}\left| x-3 \right|
Now for ε>0\varepsilon >0, choose δ=32ε\delta =\dfrac{3}{2}\varepsilon , we have
Whenever x3<δ=32ε23x3<ε\left| x-3 \right|<\delta =\dfrac{3}{2}\varepsilon \Rightarrow \dfrac{2}{3}\left| x-3 \right|<\varepsilon
Bit since 2x+3323x3\left| \sqrt{2x+3}-3 \right|\le \dfrac{2}{3}\left| x-3 \right|, we have
2x+33<ε\left| \sqrt{2x+3}-3 \right|<\varepsilon
Hence whenever x3<δ\left| x-3 \right|<\delta , we have 2x+33<ε\left| \sqrt{2x+3}-3 \right|<\varepsilon
Hence we have limx32x+3=3\underset{x\to 3}{\mathop{\lim }}\,\sqrt{2x+3}=3
Claim 2: limx3h(x)=6\underset{x\to 3}{\mathop{\lim }}\,h\left( x \right)=6
Observe that x+36=x3\left| x+3-6 \right|=\left| x-3 \right|
So if we choose δ=ε\delta =\varepsilon , we have ε>0,δ=ε>0\forall \varepsilon >0,\exists \delta =\varepsilon >0 such that x+63<ε\left| x+6-3 \right|<\varepsilon whenever x3<δ\left| x-3 \right|<\delta
Hence limx3h(x)=6\underset{x\to 3}{\mathop{\lim }}\,h\left( x \right)=6
Hence limx3f(x)=limx3g(x)limx3h(x)=36=12\underset{x\to 3}{\mathop{\lim }}\,f\left( x \right)=\dfrac{\underset{x\to 3}{\mathop{\lim }}\,g\left( x \right)}{\underset{x\to 3}{\mathop{\lim }}\,h\left( x \right)}=\dfrac{3}{6}=\dfrac{1}{2}
Hence proved.

Note: Alternatively, we have
limx3+f(x)=limh02(h+3)+3h+3+3=limh02h+9h+6=2(0)+90+6=36=12\underset{x\to 3+}{\mathop{\lim }}\,f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\, \dfrac{\sqrt{2\left( h+3 \right)+3}}{h+3+3}=\underset{h\to 0}{\mathop{\lim }}\, \dfrac{\sqrt{2h+9}}{h+6}=\dfrac{\sqrt{2\left( 0 \right)+9}}{0+6}=\dfrac{3}{6}=\dfrac{1}{2} and limx3f(x)=limh02(3h)+33h+3=limh092h6h=906=12\underset{x\to {{3}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\, \dfrac{\sqrt{2\left( 3-h \right)+3}}{3-h+3}=\underset{h\to 0}{\mathop{\lim }}\, \dfrac{\sqrt{9-2h}}{6-h}=\dfrac{\sqrt{9-0}}{6}=\dfrac{1}{2}
Hence LHL = RHL =12=\dfrac{1}{2}
Hence the limit exists and is equal to 12\dfrac{1}{2}.