Question
Question: Evaluate the following limit: \( \mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {\cot 2x - \cos ...
Evaluate the following limit:
x→0limx(cot2x−cosec2x)
Solution
Hint : To find the value of the limit x→0limx(cot2x−cosec2x) , first of all substitute cot2x=sin2xcos2x and cosec2x=sin2x1 . Then simplify and take – sign common and use the formula 1−cos2x=2sin2x . Now, we will get xsinx=1 . Then, use the formula sin2x=2sinxcosx and now we can put the value of the limit that is x=0 and find the answer.
Complete step-by-step answer :
In this question, we are asked to find the value of the given limit.
Given limit: x→0limx(cot2x−cosec2x) - - - - - - - - - - - (1)
First of all, let this limit be equal to L. Therefore,
⇒L=x→0limx(cot2x−cosec2x)
Now, we know that cot is the ratio of cos and sin and cosec is the inverse of sin. So, we can say that
⇒cot2x=sin2xcos2x
And
⇒cosec2x=sin2x1
Therefore, substituting these values in equation (1), we get
⇒L=x→0limx(sin2xcos2x−sin2x1)
Now, taking LCM, we get
⇒L=x→0lim((sin2xcos2x−1)x1)
Now, taking out minus sign (-), we get
⇒L=x→0lim(−(sin2x1−cos2x)x1) - - - - - - - - - - - - - (2)
Now, we know the trigonometric relation that,
⇒1−cos2x=2sin2x
Therefore, substituting this value in equation (2), we get
⇒L=x→0lim(−(sin2x2sin2x)x1) - - - - - - - - (3)
⇒L=x→0lim(−xsinx(sin2x2sinx))
Now, according to the rule of limits,
⇒x→0limθsinθ=1
Therefore, we get
⇒L=x→0lim(−(1)(sin2x2sinx))
Now, we have the formula
⇒sin2x=2sinxcosx
Therefore, we get
Hence, x→0limx(cot2x−cosec2x) is equal to -1.
So, the correct answer is “-1”.
Note : Here, we can also find our answer without putting the value of the limit. Here, by equation (3), we have
⇒L=x→0lim(−(sin2x2sin2x)x1)
Now, sin2x=2sinxcosx . Therefore, we get
⇒L=x→0lim(−(2sinxcosx2sin2x)x1) ⇒L=x→0lim(−(cosxsinx)x1) ⇒L=x→0lim(−xtanx)
Now, we know that
x→0limθtanθ=1
Therefore,
⇒L=−1