Solveeit Logo

Question

Question: Evaluate the following limit: \( \mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {\cot 2x - \cos ...

Evaluate the following limit:
limx0(cot2xcosec2x)x\mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {\cot 2x - \cos ec2x} \right)}}{x}

Explanation

Solution

Hint : To find the value of the limit limx0(cot2xcosec2x)x\mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {\cot 2x - \cos ec2x} \right)}}{x} , first of all substitute cot2x=cos2xsin2x\cot 2x = \dfrac{{\cos 2x}}{{\sin 2x}} and cosec2x=1sin2x\cos ec2x = \dfrac{1}{{\sin 2x}} . Then simplify and take – sign common and use the formula 1cos2x=2sin2x1 - \cos 2x = 2{\sin ^2}x . Now, we will get sinxx=1\dfrac{{\sin x}}{x} = 1 . Then, use the formula sin2x=2sinxcosx\sin 2x = 2\sin x\cos x and now we can put the value of the limit that is x=0x = 0 and find the answer.

Complete step-by-step answer :
In this question, we are asked to find the value of the given limit.
Given limit: limx0(cot2xcosec2x)x\mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {\cot 2x - \cos ec2x} \right)}}{x} - - - - - - - - - - - (1)
First of all, let this limit be equal to L. Therefore,
L=limx0(cot2xcosec2x)x\Rightarrow L = \mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {\cot 2x - \cos ec2x} \right)}}{x}
Now, we know that cot is the ratio of cos and sin and cosec is the inverse of sin. So, we can say that
cot2x=cos2xsin2x\Rightarrow \cot 2x = \dfrac{{\cos 2x}}{{\sin 2x}}
And
cosec2x=1sin2x\Rightarrow \cos ec2x = \dfrac{1}{{\sin 2x}}
Therefore, substituting these values in equation (1), we get
L=limx0(cos2xsin2x1sin2x)x\Rightarrow L = \mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {\dfrac{{\cos 2x}}{{\sin 2x}} - \dfrac{1}{{\sin 2x}}} \right)}}{x}
Now, taking LCM, we get
L=limx0((cos2x1sin2x)1x)\Rightarrow L = \mathop {\lim }\limits_{x \to 0} \left( {\left( {\dfrac{{\cos 2x - 1}}{{\sin 2x}}} \right)\dfrac{1}{x}} \right)
Now, taking out minus sign (-), we get
L=limx0((1cos2xsin2x)1x)\Rightarrow L = \mathop {\lim }\limits_{x \to 0} \left( { - \left( {\dfrac{{1 - \cos 2x}}{{\sin 2x}}} \right)\dfrac{1}{x}} \right) - - - - - - - - - - - - - (2)
Now, we know the trigonometric relation that,
1cos2x=2sin2x\Rightarrow 1 - \cos 2x = 2{\sin ^2}x
Therefore, substituting this value in equation (2), we get
L=limx0((2sin2xsin2x)1x)\Rightarrow L = \mathop {\lim }\limits_{x \to 0} \left( { - \left( {\dfrac{{2{{\sin }^2}x}}{{\sin 2x}}} \right)\dfrac{1}{x}} \right) - - - - - - - - (3)
L=limx0(sinxx(2sinxsin2x))\Rightarrow L = \mathop {\lim }\limits_{x \to 0} \left( { - \dfrac{{\sin x}}{x}\left( {\dfrac{{2\sin x}}{{\sin 2x}}} \right)} \right)
Now, according to the rule of limits,
limx0sinθθ=1\Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin \theta }}{\theta } = 1
Therefore, we get
L=limx0((1)(2sinxsin2x))\Rightarrow L = \mathop {\lim }\limits_{x \to 0} \left( { - \left( 1 \right)\left( {\dfrac{{2\sin x}}{{\sin 2x}}} \right)} \right)
Now, we have the formula
sin2x=2sinxcosx\Rightarrow \sin 2x = 2\sin x\cos x
Therefore, we get

L=limx0((1)(2sinx2sinxcosx)) L=limx0((1cosx)) L=(1cos0) L=(11) L=1   \Rightarrow L = \mathop {\lim }\limits_{x \to 0} \left( { - \left( 1 \right)\left( {\dfrac{{2\sin x}}{{2\sin x\cos x}}} \right)} \right) \\\ \Rightarrow L = \mathop {\lim }\limits_{x \to 0} \left( { - \left( {\dfrac{1}{{\cos x}}} \right)} \right) \\\ \Rightarrow L = - \left( {\dfrac{1}{{\cos 0}}} \right) \\\ \Rightarrow L = - \left( {\dfrac{1}{1}} \right) \\\ \Rightarrow L = - 1 \;

Hence, limx0(cot2xcosec2x)x\mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {\cot 2x - \cos ec2x} \right)}}{x} is equal to -1.
So, the correct answer is “-1”.

Note : Here, we can also find our answer without putting the value of the limit. Here, by equation (3), we have
L=limx0((2sin2xsin2x)1x)\Rightarrow L = \mathop {\lim }\limits_{x \to 0} \left( { - \left( {\dfrac{{2{{\sin }^2}x}}{{\sin 2x}}} \right)\dfrac{1}{x}} \right)
Now, sin2x=2sinxcosx\sin 2x = 2\sin x\cos x . Therefore, we get
L=limx0((2sin2x2sinxcosx)1x) L=limx0((sinxcosx)1x) L=limx0(tanxx)   \Rightarrow L = \mathop {\lim }\limits_{x \to 0} \left( { - \left( {\dfrac{{2{{\sin }^2}x}}{{2\sin x\cos x}}} \right)\dfrac{1}{x}} \right) \\\ \Rightarrow L = \mathop {\lim }\limits_{x \to 0} \left( { - \left( {\dfrac{{\sin x}}{{\cos x}}} \right)\dfrac{1}{x}} \right) \\\ \Rightarrow L = \mathop {\lim }\limits_{x \to 0} \left( { - \dfrac{{\tan x}}{x}} \right) \;
Now, we know that
limx0tanθθ=1\mathop {\lim }\limits_{x \to 0} \dfrac{{\tan \theta }}{\theta } = 1
Therefore,
L=1\Rightarrow L = - 1