Solveeit Logo

Question

Question: Evaluate the following limit: \(\displaystyle \lim_{x \to 0}\dfrac{\left( 1-\cos 2x \right)\left( 3+...

Evaluate the following limit: limx0(1cos2x)(3+cosx)xtan4x\displaystyle \lim_{x \to 0}\dfrac{\left( 1-\cos 2x \right)\left( 3+\cos x \right)}{x\tan 4x}
(a) 4
(b) 3
(c) 2
(d) 12\dfrac{1}{2}

Explanation

Solution

Use the formula cos2x=12sin2x\cos 2x=1-2{{\sin }^{2}}x and simplify the expression you get. Then divide the denominator and numerator by x and use the formulae limx0sinxx=1 and limx0tankxx=k\displaystyle \lim_{x \to 0}\dfrac{\sin x}{x}=1\text{ and }\displaystyle \lim_{x \to 0}\dfrac{\tan kx}{x}=k , where k is a constant, to further simplify and reach to the final answer.

Complete step-by-step answer:
In the expression given in the question, if we put the limit and check, then we will find that the expression turns out to be of the form 00\dfrac{0}{0}, which is an indeterminate form.
So, using the formula cos2x=12sin2x\cos 2x=1-2{{\sin }^{2}}x in our expression, we get
limx0(1cos2x)(3+cosx)xtan4x\displaystyle \lim_{x \to 0}\dfrac{\left( 1-\cos 2x \right)\left( 3+\cos x \right)}{x\tan 4x}
=limx0(1(12sin2x))(3+cosx)xtan4x=\displaystyle \lim_{x \to 0}\dfrac{\left( 1-\left( 1-2{{\sin }^{2}}x \right) \right)\left( 3+\cos x \right)}{x\tan 4x}
=limx02sin2x(3+cosx)xtan4x=\displaystyle \lim_{x \to 0}\dfrac{2{{\sin }^{2}}x\left( 3+\cos x \right)}{x\tan 4x}
Now, we will divide the numerator and denominator by x. On doing so, we get
=limx02sin2x(3+cosx)x×xtan4xx=\displaystyle \lim_{x \to 0}\dfrac{2{{\sin }^{2}}x\left( 3+\cos x \right)}{x\times \dfrac{x\tan 4x}{x}}
Now, we will rearrange the terms to convert the terms to suitable forms. On doing so, we get
=limx02×sin2xx2×1tan4xx×(3+cosx)=\displaystyle \lim_{x \to 0}2\times \dfrac{{{\sin }^{2}}x}{{{x}^{2}}}\times \dfrac{1}{\dfrac{\tan 4x}{x}}\times \left( 3+\cos x \right)
=limx02×(sinxx)2×1tan4xx×(3+cosx)=\displaystyle \lim_{x \to 0}2\times {{\left( \dfrac{\sin x}{x} \right)}^{2}}\times \dfrac{1}{\dfrac{\tan 4x}{x}}\times \left( 3+\cos x \right)
Now, we will use the formulae limx0sinxx=1 and limx0tankxx=k\displaystyle \lim_{x \to 0}\dfrac{\sin x}{x}=1\text{ and }\displaystyle \lim_{x \to 0}\dfrac{\tan kx}{x}=k , where k is a constant, to further simplify. On doing so, we get
=limx02×12×14×(3+cosx)=\displaystyle \lim_{x \to 0}2\times {{1}^{2}}\times \dfrac{1}{4}\times \left( 3+\cos x \right)
=limx0(3+cosx)2=\displaystyle \lim_{x \to 0}\dfrac{\left( 3+\cos x \right)}{2}
Now, we will put the limit and we know that cos0=1\cos 0{}^\circ =1 .
=3+cos02=3+12=2=\dfrac{3+\cos 0{}^\circ }{2}=\dfrac{3+1}{2}=2
Therefore, the answer to the above question is 2.

So, the correct answer is “Option c”.

Note: Whenever you come across the forms 00\dfrac{0}{0} or \dfrac{\infty }{\infty } and cannot think of a formulae to use always give a try to l-hospital’s rule as this may give you the answer. Also, keep a habit of checking the indeterminate forms of the expressions before starting with the questions of limit as this helps you to select the shortest possible way to reach the answer.