Solveeit Logo

Question

Question: Evaluate the following \[\left( {{\operatorname{cosec}}^{2}}{{45}^{o}}{{\sec }^{2}}{{30}^{o}} \rig...

Evaluate the following
(cosec245osec230o)(sin230o+4cot245osec260o)\left( {{\operatorname{cosec}}^{2}}{{45}^{o}}{{\sec }^{2}}{{30}^{o}} \right)\left( {{\sin }^{2}}{{30}^{o}}+4{{\cot }^{2}}{{45}^{o}}-{{\sec }^{2}}{{60}^{o}} \right)

Explanation

Solution

Hint:First of all, consider the expression given in the question. Now make the table for trigonometric ratios of general angles. Now, from that find the values of sin30o,cosec45o,sec60o,sec30o\sin {{30}^{o}},\operatorname{cosec}{{45}^{o}},\sec {{60}^{o}},\sec {{30}^{o}} and cot45o\cot {{45}^{o}} and substitute these in the given expression to get the required answer.

Complete step-by-step answer:
In this question, we have to find the value of the expression
(cosec245osec230o)(sin230o+4cot245osec260o)\left( {{\operatorname{cosec}}^{2}}{{45}^{o}}{{\sec }^{2}}{{30}^{o}} \right)\left( {{\sin }^{2}}{{30}^{o}}+4{{\cot }^{2}}{{45}^{o}}-{{\sec }^{2}}{{60}^{o}} \right)
Let us consider the expression given in the question.
E=(cosec245osec230o)(sin230o+4cot245osec260o)....(i)E=\left( {{\operatorname{cosec}}^{2}}{{45}^{o}}{{\sec }^{2}}{{30}^{o}} \right)\left( {{\sin }^{2}}{{30}^{o}}+4{{\cot }^{2}}{{45}^{o}}-{{\sec }^{2}}{{60}^{o}} \right)....\left( i \right)
Now, we have to find the values of sin30o,cosec45o,sec60o,sec30o\sin {{30}^{o}},\operatorname{cosec}{{45}^{o}},\sec {{60}^{o}},\sec {{30}^{o}} and cot45o\cot {{45}^{o}}.
Let us make the table for trigonometric ratios of general angles like 0o,30o,45o,60o,90o{{0}^{o}},{{30}^{o}},{{45}^{o}},{{60}^{o}},{{90}^{o}} and find the required values.

From the above table, we get, cosec45o=2\operatorname{cosec}{{45}^{o}}=\sqrt{2}. By substituting this in equation (i), we get,
E=((2)2.sec230o)(sin230o+4cot245osec260o)E=\left( {{\left( \sqrt{2} \right)}^{2}}.{{\sec }^{2}}{{30}^{o}} \right)\left( {{\sin }^{2}}{{30}^{o}}+4{{\cot }^{2}}{{45}^{o}}-{{\sec }^{2}}{{60}^{o}} \right)
Also from the above table, we get sec30o=23\sec {{30}^{o}}=\dfrac{2}{\sqrt{3}}. By substituting this in the above equation, we get, E=((2)2.(23)2)(sin230o+4cot245osec260o)E=\left( {{\left( \sqrt{2} \right)}^{2}}.{{\left( \dfrac{2}{\sqrt{3}} \right)}^{2}} \right)\left( {{\sin }^{2}}{{30}^{o}}+4{{\cot }^{2}}{{45}^{o}}-{{\sec }^{2}}{{60}^{o}} \right)
From the table, we also get, sin30o=12\sin {{30}^{o}}=\dfrac{1}{2}. By substituting this in the above equation, we get,
E=((2)2.(23)2)((12)2+4cot245osec260o)E=\left( {{\left( \sqrt{2} \right)}^{2}}.{{\left( \dfrac{2}{\sqrt{3}} \right)}^{2}} \right)\left( {{\left( \dfrac{1}{2} \right)}^{2}}+4{{\cot }^{2}}{{45}^{o}}-{{\sec }^{2}}{{60}^{o}} \right)
From the table, we also get, cot45o=1\cot {{45}^{o}}=1. By substituting this in the above equation, we get,
E=((2)2.(23)2)((12)2+4(1)2sec260o)E=\left( {{\left( \sqrt{2} \right)}^{2}}.{{\left( \dfrac{2}{\sqrt{3}} \right)}^{2}} \right)\left( {{\left( \dfrac{1}{2} \right)}^{2}}+4{{\left( 1 \right)}^{2}}-{{\sec }^{2}}{{60}^{o}} \right)
From the table, we also get, sec60o=2\sec {{60}^{o}}=2. By substituting this in the above equation, we get,
E=((2)2.(23)2)((12)2+4(1)2(2)2)E=\left( {{\left( \sqrt{2} \right)}^{2}}.{{\left( \dfrac{2}{\sqrt{3}} \right)}^{2}} \right)\left( {{\left( \dfrac{1}{2} \right)}^{2}}+4{{\left( 1 \right)}^{2}}-{{\left( 2 \right)}^{2}} \right)
By simplifying the above equation, we get,
E=[2(43)][14+44]E=\left[ 2\left( \dfrac{4}{3} \right) \right]\left[ \dfrac{1}{4}+4-4 \right]
E=(83)(14)E=\left( \dfrac{8}{3} \right)\left( \dfrac{1}{4} \right)
E=23E=\dfrac{2}{3}
Hence, we get the value of the expression (cosec245osec230o)(sin230o+4cot245osec260o)\left( {{\operatorname{cosec}}^{2}}{{45}^{o}}{{\sec }^{2}}{{30}^{o}} \right)\left( {{\sin }^{2}}{{30}^{o}}+4{{\cot }^{2}}{{45}^{o}}-{{\sec }^{2}}{{60}^{o}} \right) as 23\dfrac{2}{3}.

Note: In these types of questions, students just need to remember the values of sinθ\sin \theta and cosθ\cos \theta at various angles like 0o,30o,60o,45o,{{0}^{o}},{{30}^{o}},{{60}^{o}},{{45}^{o}}, etc. and they can find all other trigonometric ratios using them. For example, they can find cosec45o\operatorname{cosec}{{45}^{o}} by using 1sin45o,sec30o\dfrac{1}{\sin {{45}^{o}}},\sec {{30}^{o}} by using 1cos30o,cot45o\dfrac{1}{\cos {{30}^{o}}},\cot {{45}^{o}} by using cos45osin45o\dfrac{\cos {{45}^{o}}}{\sin {{45}^{o}}} and sec60o\sec {{60}^{o}} by using 1cos60o\dfrac{1}{\cos {{60}^{o}}}.