Question
Question: Evaluate the following integrals: \(\int {\sqrt {2{x^2} + 3x + 4} dx} \). A) \(\left( {4x + 3} \ri...
Evaluate the following integrals: ∫2x2+3x+4dx.
A) (4x+3)2x2+3x+4+32232log(x+43)+21.2x2+3x+4+C
B) 81(4x+3)2x2+3x+4+32232log(x+43)+21.2x2+3x+4+C
C) 81(4x+3)2x2+3x+4+322log(x+43)+21.2x2+3x+4+C
D) None of these
Solution
We have asked in the question to evaluate ∫2x2+3x+4dx.
Then after, we will take out 2 common from the above equation. Then, we will make the equation a perfect square equation for that we will add and subtract 169.
Then, we will apply ∫x2+a2dx=2xx2+a2+2a2log(x+x2+a2)+C on the given equation.
Finally, after solving we will get the required answer.
Complete step by step solution:
It is given in the question to evaluate ∫2x2+3x+4dx .
Let, I=∫2x2+3x+4dx
Now, take out 2 common from the above equation, we get,
I=∫2x2+23x+2dx
To make x2+23x+2 a perfect square equation we will add and subtract 169 .
I=∫2x2+23x+169−169+2dx
I=∫2(x2+23x+169)−169+2dx
I=∫2(x+43)2+1632−9dx
I=∫2(x+43)2+1623dx
I=∫2(x+43)2+(423)2dx
Now, the above equation is in the form of ∫x2+a2dx where we have x+43 in place of ′x′and 423 in place of ′a′.
Since, ∫x2+a2dx=2xx2+a2+2a2log(x+x2+a2)+C .
Now, apply ∫x2+a2dx=2xx2+a2+2a2log(x+x2+a2)+C in the equation ∫2(x+43)2+(423)2dx , we get,
I=22x+43(x+43)2+1623+21623log(x+43)+(x+43)2+1623+C
Now, apply (a+b)2=a2+2ab+b2 on (x+43)
I=2[84x+3x2+2×x×43+169+1623+3223log((x+43)+x2+2×x×43+169+1623)]+C
I=2[84x+3x2+23x+1632+3223log((x+43)+x2+23x+1632)]+C
I=2[84x+3x2+23x+2+3223log((x+43)+x2+23x+2)]+C
I=2[(84x+3)22x2+3x+4+32232log((x+43)+22x2+3x+4)]+C
∴I=(84x+3)2x2+3x+4+32232log[(x+43)+22x2+3x+4]+C
Hence, ∫2x2+3x+4dx=(84x+3)2x2+3x+4+32232log[(x+43)+22x2+3x+4]+C
Therefore, option (B) is correct.
Note:
Some properties of integration:
- ∫x2+a2dx=ln(x+x2+a2)+C
- ∫x2−a2dx=lnx+x2−a2+C
- ∫a2−x2dx=2xa2−x2+2a2sin−1ax+C
- ∫x2+a2dx=2xx2+a2+2a2log(x+x2+a2)+C
- ∫x2−a2dx=2xx2−a2−2a2logx+x2−a2+C