Solveeit Logo

Question

Question: Evaluate the following integrals: \(\int {\sqrt {2{x^2} + 3x + 4} dx} \). A) \(\left( {4x + 3} \ri...

Evaluate the following integrals: 2x2+3x+4dx\int {\sqrt {2{x^2} + 3x + 4} dx} .
A) (4x+3)2x2+3x+4+23232log(x+34)+12.2x2+3x+4+C\left( {4x + 3} \right)\sqrt {2{x^2} + 3x + 4} + \dfrac{{23\sqrt 2 }}{{32}}\log \left| {\left( {x + \dfrac{3}{4}} \right) + \dfrac{1}{{\sqrt 2 }}.\sqrt {2{x^2} + 3x + 4} } \right| + C
B) 18(4x+3)2x2+3x+4+23232log(x+34)+12.2x2+3x+4+C\dfrac{1}{8}\left( {4x + 3} \right)\sqrt {2{x^2} + 3x + 4} + \dfrac{{23\sqrt 2 }}{{32}}\log \left| {\left( {x + \dfrac{3}{4}} \right) + \dfrac{1}{{\sqrt 2 }}.\sqrt {2{x^2} + 3x + 4} } \right| + C
C) 18(4x+3)2x2+3x+4+232log(x+34)+12.2x2+3x+4+C\dfrac{1}{8}\left( {4x + 3} \right)\sqrt {2{x^2} + 3x + 4} + \dfrac{{\sqrt 2 }}{{32}}\log \left| {\left( {x + \dfrac{3}{4}} \right) + \dfrac{1}{{\sqrt 2 }}.\sqrt {2{x^2} + 3x + 4} } \right| + C
D) None of these

Explanation

Solution

We have asked in the question to evaluate 2x2+3x+4dx\int {\sqrt {2{x^2} + 3x + 4} dx} .
Then after, we will take out 2 common from the above equation. Then, we will make the equation a perfect square equation for that we will add and subtract 916\dfrac{9}{{16}}.
Then, we will apply x2+a2dx=x2x2+a2+a22log(x+x2+a2)+C\int {\sqrt {{x^2} + {a^2}} } dx = \dfrac{x}{2}\sqrt {{x^2} + {a^2}} + \dfrac{{{a^2}}}{2}\log \left( {x + \sqrt {{x^2} + {a^2}} } \right) + C on the given equation.
Finally, after solving we will get the required answer.

Complete step by step solution:
It is given in the question to evaluate 2x2+3x+4dx\int {\sqrt {2{x^2} + 3x + 4} dx} .
Let, I=2x2+3x+4dxI = \int {\sqrt {2{x^2} + 3x + 4} dx}
Now, take out 2 common from the above equation, we get,
I=2x2+3x2+2dxI = \int {\sqrt 2 \sqrt {{x^2} + \dfrac{{3x}}{2} + 2} dx}
To make x2+3x2+2{x^2} + \dfrac{{3x}}{2} + 2 a perfect square equation we will add and subtract 916\dfrac{9}{{16}} .
I=2x2+3x2+916916+2dxI = \int {\sqrt 2 \sqrt {{x^2} + \dfrac{{3x}}{2} + \dfrac{9}{{16}} - \dfrac{9}{{16}} + 2} dx}
I=2(x2+3x2+916)916+2dxI = \int {\sqrt 2 \sqrt {\left( {{x^2} + \dfrac{{3x}}{2} + \dfrac{9}{{16}}} \right) - \dfrac{9}{{16}} + 2} dx}
I=2(x+34)2+32916dxI = \int {\sqrt 2 \sqrt {{{\left( {x + \dfrac{3}{4}} \right)}^2} + \dfrac{{32 - 9}}{{16}}} dx}
I=2(x+34)2+2316dxI = \int {\sqrt 2 \sqrt {{{\left( {x + \dfrac{3}{4}} \right)}^2} + \dfrac{{23}}{{16}}} dx}
I=2(x+34)2+(234)2dxI = \int {\sqrt 2 \sqrt {{{\left( {x + \dfrac{3}{4}} \right)}^2} + {{\left( {\dfrac{{\sqrt {23} }}{4}} \right)}^2}} dx}
Now, the above equation is in the form of x2+a2dx\int {\sqrt {{x^2} + {a^2}} } dx where we have x+34x + \dfrac{3}{4} in place of x'x'and 234\dfrac{{\sqrt {23} }}{4} in place of a.'a'.
Since, x2+a2dx=x2x2+a2+a22log(x+x2+a2)+C\int {\sqrt {{x^2} + {a^2}} } dx = \dfrac{x}{2}\sqrt {{x^2} + {a^2}} + \dfrac{{{a^2}}}{2}\log \left( {x + \sqrt {{x^2} + {a^2}} } \right) + C .
Now, apply x2+a2dx=x2x2+a2+a22log(x+x2+a2)+C\int {\sqrt {{x^2} + {a^2}} } dx = \dfrac{x}{2}\sqrt {{x^2} + {a^2}} + \dfrac{{{a^2}}}{2}\log \left( {x + \sqrt {{x^2} + {a^2}} } \right) + C in the equation 2(x+34)2+(234)2dx\int {\sqrt 2 \sqrt {{{\left( {x + \dfrac{3}{4}} \right)}^2} + {{\left( {\dfrac{{\sqrt {23} }}{4}} \right)}^2}} dx} , we get,

I=2[x+342(x+34)2+2316+23162log((x+34)+(x+34)2+2316)]+CI = \sqrt 2 \left[ {\dfrac{{x + \dfrac{3}{4}}}{2}\sqrt {{{\left( {x + \dfrac{3}{4}} \right)}^2} + \dfrac{{23}}{{16}}} + \dfrac{{\dfrac{{23}}{{16}}}}{2}\log \left( {\left( {x + \dfrac{3}{4}} \right) + \sqrt {{{\left( {x + \dfrac{3}{4}} \right)}^2} + \dfrac{{23}}{{16}}} } \right)} \right] + C
Now, apply (a+b)2=a2+2ab+b2{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2} on (x+34)\left( {x + \dfrac{3}{4}} \right)
I=2[4x+38x2+2×x×34+916+2316+2332log((x+34)+x2+2×x×34+916+2316)]+CI = \sqrt 2 \left[ {\dfrac{{4x + 3}}{8}\sqrt {{x^2} + 2 \times x \times \dfrac{3}{4} + \dfrac{9}{{16}} + \dfrac{{23}}{{16}}} + \dfrac{{23}}{{32}}\log \left( {\left( {x + \dfrac{3}{4}} \right) + \sqrt {{x^2} + 2 \times x \times \dfrac{3}{4} + \dfrac{9}{{16}} + \dfrac{{23}}{{16}}} } \right)} \right] + C
I=2[4x+38x2+3x2+3216+2332log((x+34)+x2+3x2+3216)]+CI = \sqrt 2 \left[ {\dfrac{{4x + 3}}{8}\sqrt {{x^2} + \dfrac{{3x}}{2} + \dfrac{{32}}{{16}}} + \dfrac{{23}}{{32}}\log \left( {\left( {x + \dfrac{3}{4}} \right) + \sqrt {{x^2} + \dfrac{{3x}}{2} + \dfrac{{32}}{{16}}} } \right)} \right] + C
I=2[4x+38x2+3x2+2+2332log((x+34)+x2+3x2+2)]+CI = \sqrt 2 \left[ {\dfrac{{4x + 3}}{8}\sqrt {{x^2} + \dfrac{{3x}}{2} + 2} + \dfrac{{23}}{{32}}\log \left( {\left( {x + \dfrac{3}{4}} \right) + \sqrt {{x^2} + \dfrac{{3x}}{2} + 2} } \right)} \right] + C
I=2[(4x+38)2x2+3x+42+23232log((x+34)+2x2+3x+42)]+CI = \sqrt 2 \left[ {\left( {\dfrac{{4x + 3}}{8}} \right)\dfrac{{\sqrt {2{x^2} + 3x + 4} }}{{\sqrt 2 }} + \dfrac{{23\sqrt 2 }}{{32}}\log \left( {\left( {x + \dfrac{3}{4}} \right) + \dfrac{{\sqrt {2{x^2} + 3x + 4} }}{{\sqrt 2 }}} \right)} \right] + C
I=(4x+38)2x2+3x+4+23232log[(x+34)+2x2+3x+42]+C\therefore I = \left( {\dfrac{{4x + 3}}{8}} \right)\sqrt {2{x^2} + 3x + 4} + \dfrac{{23\sqrt 2 }}{{32}}\log \left[ {\left( {x + \dfrac{3}{4}} \right) + \dfrac{{\sqrt {2{x^2} + 3x + 4} }}{{\sqrt 2 }}} \right] + C
Hence, 2x2+3x+4dx=(4x+38)2x2+3x+4+23232log[(x+34)+2x2+3x+42]+C\int {\sqrt {2{x^2} + 3x + 4} dx} = \left( {\dfrac{{4x + 3}}{8}} \right)\sqrt {2{x^2} + 3x + 4} + \dfrac{{23\sqrt 2 }}{{32}}\log \left[ {\left( {x + \dfrac{3}{4}} \right) + \dfrac{{\sqrt {2{x^2} + 3x + 4} }}{{\sqrt 2 }}} \right] + C

Therefore, option (B) is correct.

Note:
Some properties of integration:

  1. dxx2+a2=ln(x+x2+a2)+C\int {\dfrac{{dx}}{{\sqrt {{x^2} + {a^2}} }}} = \ln \left( {x + \sqrt {{x^2} + {a^2}} } \right) + C
  2. dxx2a2=lnx+x2a2+C\int {\dfrac{{dx}}{{\sqrt {{x^2} - {a^2}} }}} = \ln \left| {x + \sqrt {{x^2} - {a^2}} } \right| + C
  3. a2x2dx=x2a2x2+a22sin1xa+C\int {\sqrt {{a^2} - {x^2}} } dx = \dfrac{x}{2}\sqrt {{a^2} - {x^2}} + \dfrac{{{a^2}}}{2}{\sin ^{ - 1}}\dfrac{x}{a} + C
  4. x2+a2dx=x2x2+a2+a22log(x+x2+a2)+C\int {\sqrt {{x^2} + {a^2}} } dx = \dfrac{x}{2}\sqrt {{x^2} + {a^2}} + \dfrac{{{a^2}}}{2}\log \left( {x + \sqrt {{x^2} + {a^2}} } \right) + C
  5. x2a2dx=x2x2a2a22logx+x2a2+C\int {\sqrt {{x^2} - {a^2}} } dx = \dfrac{x}{2}\sqrt {{x^2} - {a^2}} - \dfrac{{{a^2}}}{2}\log \left| {x + \sqrt {{x^2} - {a^2}} } \right| + C