Solveeit Logo

Question

Question: Evaluate the following integral: \(\int{\tan x{{\sec }^{2}}x\sqrt{1-{{\tan }^{2}}x}dx}\)...

Evaluate the following integral:
tanxsec2x1tan2xdx\int{\tan x{{\sec }^{2}}x\sqrt{1-{{\tan }^{2}}x}dx}

Explanation

Solution

Hint: To solve this question substitute value of 1tan2x=t1-{{\tan }^{2}}x=t
We have the given integral as I=tanxsec2x1tan2xdx..........(1)I=\int{\tan x{{\sec }^{2}}x\sqrt{1-{{\tan }^{2}}x}dx}..........\left( 1 \right)

Here, we can use substitute method for finding/solving the given integral in a proper way:
Let t=1tan2xt=1-{{\tan }^{2}}x
Differentiating both sides with respect to xx
t=1tan2xt=1-{{\tan }^{2}}x
dtdx=2tanxsec2x\dfrac{dt}{dx}=-2\tan x{{\sec }^{2}}x (ddx(tanx) Andsec2x)\left( \dfrac{d}{dx}\left( \tan x \right)\ And -{{\sec }^{2}}x \right) chain rule is applied
dt=2tanxsec2xdx.............(2)dt=-2\tan x{{\sec }^{2}}xdx.............\left( 2 \right)
From the equation (1)&(2)\left( 1 \right)\And \left( 2 \right); we can replace tanxsec2xdx\tan x{{\sec }^{2}}xdx by
above equation (2)\left( 2 \right) as
tanxsec2xdx=dt2\tan x{{\sec }^{2}}xdx=\dfrac{-dt}{2}
Hence, equation (1)\left( 1 \right) will become
I=12tdtI=\int{\dfrac{-1}{2}\sqrt{t}dt} as (1tan2x=t)\left( 1-{{\tan }^{2}}x=t \right)

& I=\dfrac{-1}{2}\int{{{t}^{\dfrac{1}{2}}}}dt \\\ & I=\dfrac{-1}{2}\dfrac{{{t}^{\dfrac{1}{2}+1}}}{\dfrac{1}{2}+1}+C\text{ } as \int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n+1}} \\\ \end{aligned}$$ $$I=\dfrac{-1}{2}\dfrac{{{t}^{\dfrac{3}{2}}}}{\dfrac{3}{2}}+C=\dfrac{-1}{2}\times \dfrac{2}{3}{{t}^{\dfrac{3}{2}}}+C$$ $$\begin{aligned} & I=\dfrac{-1}{3}{{t}^{\dfrac{3}{2}}}+C \\\ & \text{As }t=1-{{\tan }^{2}}x \\\ & I=\dfrac{-1}{3}{{\left( 1-{{\tan }^{2}}x \right)}^{\dfrac{3}{2}}}+C \\\ \end{aligned}$$ Hence, $\int{\tan x{{\sec }^{2}}x\sqrt{1-{{\tan }^{2}}x}}dx=\dfrac{-1}{3}{{\left( 1-{{\tan }^{2}}x \right)}^{\dfrac{3}{2}}}+C$ Note: One can substitute $t=\tan x$ Hence $dt={{\sec }^{2}}xdx$ and then can put value in integral. Therefore $I=\int{t\sqrt{1-{{t}^{2}}}dt}$ Now, he/she needs to put ${{t}^{2}}=y\And 1-{{t}^{2}}=y$ to solve the above integral. Hence, it takes one more step than the solution provided but the answer will be the same. One can convert $\tan x\And {{\sec }^{2}}x$ to cosine and sine forms which students do generally will take more time as well.