Question
Question: Evaluate the following integral: \(\int {\tan x.\tan 2x.\tan 3xdx} \) \({\text{A}}{\text{. - }}\...
Evaluate the following integral:
∫tanx.tan2x.tan3xdx
A. - 31ln∣cos(3x)∣+21ln∣cos(2x)∣+ln∣cos(x)∣+C
B. - ln∣secx∣−21ln∣sec(2x)∣+21ln∣sec3x∣+C
C. ln∣cos(x)∣+ln∣sec(2x)∣+ln∣cos(3x)∣+C
D. - 31ln∣sec(3x)∣+21ln∣sec(2x)∣+ln∣sec(x)∣+C
Solution
Hint- Use the formula, tan(3x)=1−tanx.tan2xtanx+tan2x to evaluate the given integral. Try to convert the given terms using this formula and then solve.
Complete step-by-step answer:
We have been given in the question to evaluate the integral, ∫tanx.tan2x.tan3xdx.
Now we know that tan(3x)=1−tanx.tan2xtanx+tan2x.
Using the above formula, we can write-
tan(3x).(1−tanx.tan2x)=tanx+tan2x
Solving it further, we get-
tan(3x)−tanx.tan(2x).tan(3x)=tanx+tan2x ∴tanx.tan(2x).tan(3x)=tan(3x)−tan(x)−tan(2x)→(1)
Now, the given integral is, ∫tanx.tan2x.tan3xdx
Using the equation (1), we can write the integral as-
∫tan(3x)−tan(x)−tan(2x).dx
Let I=∫tan(3x)−tan(x)−tan(2x).dx
Now, as we know ∫tan(x).dx=ln∣secx∣, using this result to evaluate the above integral.
Now we can write,
=31ln∣cos(3x)1∣−ln∣cosx1∣−21ln∣cos(2x)1∣+C
Also, we know- lnba=lna−lnb using this we get-
Therefore, the above integral evaluates to-∫tanx.tan2x.tan3xdx=−31ln∣cos(3x)∣+21ln∣cos(2x)∣+ln∣cos(x)∣+C
Hence, the correct option is option A. - 31ln∣cos(3x)∣+21ln∣cos(2x)∣+ln∣cos(x)∣+C.
Note- Whenever such types of questions appear, try solving step by step. As mentioned in the solution, first write the standard formula of tan(3x), and then try to express tanx.tan2x.tan3xin terms of tan(3x)−tan(x)−tan(2x), which will be easier to integrate. And then evaluate the integral by using the formula ∫tan(x).dx=ln∣secx∣.