Solveeit Logo

Question

Question: Evaluate the following integral: \(\int {\tan x.\tan 2x.\tan 3xdx} \) \({\text{A}}{\text{. - }}\...

Evaluate the following integral:
tanx.tan2x.tan3xdx\int {\tan x.\tan 2x.\tan 3xdx}
A. - 13lncos(3x)+12lncos(2x)+lncos(x)+C{\text{A}}{\text{. - }}\dfrac{1}{3}\ln |\cos (3x)| + \dfrac{1}{2}\ln |\cos (2x)| + \ln |\cos (x)| + C
B. - lnsecx12lnsec(2x)+12lnsec3x+C{\text{B}}{\text{. - }}\ln |\sec x| - \dfrac{1}{2}\ln |\sec (2x)| + \dfrac{1}{2}\ln |\sec 3x| + C
C. lncos(x)+lnsec(2x)+lncos(3x)+C{\text{C}}{\text{. }}\ln |\cos (x)| + \ln |\sec (2x)| + \ln |\cos (3x)| + C
D. - 13lnsec(3x)+12lnsec(2x)+lnsec(x)+C{\text{D}}{\text{. - }}\dfrac{1}{3}\ln |\sec (3x)| + \dfrac{1}{2}\ln |\sec (2x)| + \ln |\sec (x)| + C

Explanation

Solution

Hint- Use the formula, tan(3x)=tanx+tan2x1tanx.tan2x\tan (3x) = \dfrac{{\tan x + \tan 2x}}{{1 - \tan x.\tan 2x}} to evaluate the given integral. Try to convert the given terms using this formula and then solve.

Complete step-by-step answer:
We have been given in the question to evaluate the integral, tanx.tan2x.tan3xdx\int {\tan x.\tan 2x.\tan 3xdx} .
Now we know that tan(3x)=tanx+tan2x1tanx.tan2x\tan (3x) = \dfrac{{\tan x + \tan 2x}}{{1 - \tan x.\tan 2x}}.
Using the above formula, we can write-
tan(3x).(1tanx.tan2x)=tanx+tan2x\tan (3x).(1 - \tan x.\tan 2x) = \tan x + \tan 2x
Solving it further, we get-
tan(3x)tanx.tan(2x).tan(3x)=tanx+tan2x tanx.tan(2x).tan(3x)=tan(3x)tan(x)tan(2x)(1)  \tan (3x) - \tan x.\tan (2x).\tan (3x) = \tan x + \tan 2x \\\ \therefore \tan x.\tan (2x).\tan (3x) = \tan (3x) - \tan (x) - \tan (2x) \to (1) \\\
Now, the given integral is, tanx.tan2x.tan3xdx\int {\tan x.\tan 2x.\tan 3xdx}
Using the equation (1), we can write the integral as-
tan(3x)tan(x)tan(2x).dx\int {\tan (3x) - \tan (x) - \tan (2x).dx}
Let I=tan(3x)tan(x)tan(2x).dxI = \int {\tan (3x) - \tan (x) - \tan (2x).dx}
Now, as we know tan(x).dx=lnsecx\int {\tan (x).dx = \ln |\sec x|} , using this result to evaluate the above integral.

I=tan(3x)tan(x)tan(2x).dx I=tan(3x).dxtan(x).dxtan(2x).dx I=13lnsec(3x)lnsecx12lnsec(2x)+C  I = \int {\tan (3x) - \tan (x) - \tan (2x).dx} \\\ \Rightarrow I = \int {\tan (3x).dx - } \int {\tan (x).dx} - \int {\tan (2x).dx} \\\ \Rightarrow I = \dfrac{1}{3}\ln |\sec (3x)| - \ln |\sec x| - \dfrac{1}{2}\ln |\sec (2x)| + C \\\

Now we can write,
=13ln1cos(3x)ln1cosx12ln1cos(2x)+C= \dfrac{1}{3}\ln |\dfrac{1}{{\cos (3x)}}| - \ln |\dfrac{1}{{\cos x}}| - \dfrac{1}{2}\ln |\dfrac{1}{{\cos (2x)}}| + C
Also, we know- lnab=lnalnb\ln \dfrac{a}{b} = \ln a - \ln b using this we get-

I=13(ln(1)lncos(3x)(ln(1)lncosx)12(ln(1)lncos(2x)+C ln(1)=0 I=13(lncos(3x))+lncosx+12(lncos(2x))+C  I = \dfrac{1}{3}(\ln (1) - \ln |\cos (3x|) - (\ln (1) - \ln |\cos x|) - \dfrac{1}{2}(\ln (1) - \ln |\cos (2x)| + C \\\ \because \ln (1) = 0 \\\ \Rightarrow I = - \dfrac{1}{3}(\ln |\cos (3x)|) + \ln |\cos x| + \dfrac{1}{2}(\ln |\cos (2x)|) + C \\\

Therefore, the above integral evaluates to-tanx.tan2x.tan3xdx=13lncos(3x)+12lncos(2x)+lncos(x)+C\int {\tan x.\tan 2x.\tan 3xdx} = - \dfrac{1}{3}\ln |\cos (3x)| + \dfrac{1}{2}\ln |\cos (2x)| + \ln |\cos (x)| + C
Hence, the correct option is option A. - 13lncos(3x)+12lncos(2x)+lncos(x)+C{\text{A}}{\text{. - }}\dfrac{1}{3}\ln |\cos (3x)| + \dfrac{1}{2}\ln |\cos (2x)| + \ln |\cos (x)| + C.

Note- Whenever such types of questions appear, try solving step by step. As mentioned in the solution, first write the standard formula of tan(3x)\tan (3x), and then try to express tanx.tan2x.tan3x\tan x.\tan 2x.\tan 3xin terms of tan(3x)tan(x)tan(2x)\tan (3x) - \tan (x) - \tan (2x), which will be easier to integrate. And then evaluate the integral by using the formula tan(x).dx=lnsecx\int {\tan (x).dx = \ln |\sec x|} .