Solveeit Logo

Question

Question: Evaluate the following integral \(\int {{{\tan }^3}2x{\text{ }}\sec 2x{\text{ }}} dx\)...

Evaluate the following integral
tan32x sec2x dx\int {{{\tan }^3}2x{\text{ }}\sec 2x{\text{ }}} dx

Explanation

Solution

Hint- Convert the integral in simpler form by the use of trigonometric identity and algebraic terms.

Solving the trigonometric function, in order to make the integral easy
Taking tan32x{\text{ta}}{{\text{n}}^3}2x
tan32x=tan22x×tan2x\Rightarrow {\text{ta}}{{\text{n}}^3}2x = {\text{ta}}{{\text{n}}^2}2x \times {\text{tan}}2x
As we know that
tan2θ=sec2θ1{\text{ta}}{{\text{n}}^2}\theta = {\sec ^2}\theta - 1
Substituting the identity in above function
tan32x=(sec22x1)tan2x\therefore {\text{ta}}{{\text{n}}^3}2x = \left( {{{\sec }^2}2x - 1} \right){\text{tan}}2x
So now the question becomes
[(sec22x1).tan2x.sec2x]dx\int {\left[ {\left( {{{\sec }^2}2x - 1} \right){\text{.tan}}2x.\sec 2x} \right]dx}
Let us assume
sec2x=t\sec 2x = t
Differentiating both the sides with respect to xx

2sec2x.tan2x=dtdx sec2x.tan2xdx=dt2 \Rightarrow 2\sec 2x.\tan 2x = \dfrac{{dt}}{{dx}} \\\ \Rightarrow \sec 2x.\tan 2xdx = \dfrac{{dt}}{2} \\\

Now in the above problem we have
{\text{sec2}}x{\text{ = }}t{\text{& sec2}}x{\text{.tan2}}x{\text{ = }}\dfrac{{dt}}{2}
So the problem no becomes

(t21)dt2 =12(t21)dt \int {\left( {{t^2} - 1} \right)\dfrac{{dt}}{2}} \\\ = \dfrac{1}{2}\int {\left( {{t^2} - 1} \right)dt} \\\

As we know that
[xndx=xn+1n+1]\left[ {\because \int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]
So by integration, we get
12[t33t] + c\dfrac{1}{2}\left[ {\dfrac{{{t^3}}}{3} - t} \right]{\text{ + c}}
Substituting back the value of tt we get

t=sec2x 12[sec32x3sec2x] + c sec32x6sec2x2+c \because t = \sec 2x \\\ \Rightarrow \dfrac{1}{2}\left[ {\dfrac{{{{\sec }^3}2x}}{3} - \sec 2x} \right]{\text{ + c}} \\\ \Rightarrow \dfrac{{{{\sec }^3}2x}}{6} - \dfrac{{\sec 2x}}{2} + c \\\

Hence sec32x6sec2x2+c\dfrac{{{{\sec }^3}2x}}{6} - \dfrac{{\sec 2x}}{2} + c is the integral of given function.

Note- Whenever we come across complicated trigonometric terms together, we should always try to break them using trigonometric relations and formulas and try to reduce the power. Also sometimes trigonometric terms can be replaced by some algebraic variables but before concluding, it must be converted back to original form.