Solveeit Logo

Question

Question: Evaluate the following integral: \[\int{\sqrt{{{e}^{2x}}-1}\text{ }dx}\]...

Evaluate the following integral:
e2x1 dx\int{\sqrt{{{e}^{2x}}-1}\text{ }dx}

Explanation

Solution

As we have no direct formula for the given integral. Therefore, substitute ex=u{{e}^{x}}=u and express integral in terms of u. Then again substitute u=secθu=\sec \theta and then finally solve the integral to get the required value.

Complete step-by-step answer:
Here, we have to solve the integral e2x1 dx\int{\sqrt{{{e}^{2x}}-1}\text{ }dx}.
Let us consider the integral given in the question,
I=e2x1 dxI=\int{\sqrt{{{e}^{2x}}-1}\text{ }dx}
Let us take ex=u{{e}^{x}}=u
We know that ddxex=ex\dfrac{d}{dx}{{e}^{x}}={{e}^{x}}
Hence, by differentiating both sides, we get,
exdx=du{{e}^{x}}dx=du
Or, u dx=duu\text{ }dx=du
dx=duu\Rightarrow dx=\dfrac{du}{u}
By substituting the value of ex=u{{e}^{x}}=u and dx=duudx=\dfrac{du}{u} in the given integral, we get,
I=(u)21duuI=\int{\sqrt{{{\left( u \right)}^{2}}-1}\dfrac{du}{u}}
Or, I=u21udu.....(i)I=\int{\dfrac{\sqrt{{{u}^{2}}-1}}{u}du.....\left( i \right)}
Now, let us take u=secθu=\sec \theta
We know that ddx(secx)=secxtanx\dfrac{d}{dx}\left( \sec x \right)=\sec x\tan x
Therefore by differentiating both sides, we get
du=secθtanθdθdu=\sec \theta \tan \theta d\theta
Now, by substituting u=secθu=\sec \theta and du=secθtanθdθdu=\sec \theta \tan \theta d\theta in equation (i), we get,
I=sec2θ1secθ.secθ.tanθ dθI=\int{\dfrac{\sqrt{{{\sec }^{2}}\theta -1}}{\sec \theta }.\sec \theta .\tan \theta \text{ }d\theta }
Now, by canceling like terms and substituting sec2θ1=tan2θ{{\sec }^{2}}\theta -1={{\tan }^{2}}\theta in the above expression, we get
I=tan2θ.tanθdθI=\int{\sqrt{{{\tan }^{2}}\theta }.\tan \theta d\theta }
Or, I=tan2θ dθI=\int{{{\tan }^{2}}\theta \text{ }d\theta }
Again, we know that tan2θ=sec2θ1{{\tan }^{2}}\theta ={{\sec }^{2}}\theta -1. Therefore we get,
I=(sec2θ1)dθI=\int{\left( {{\sec }^{2}}\theta -1 \right)d\theta }
We know that sec2x dx=tanx\int{{{\sec }^{2}}x\text{ }dx=\tan x} and kdx=kx\int{kdx=kx}
By using these, we get,
I=tanθθ+C....(ii)I=\tan \theta -\theta +C....\left( ii \right)
We know that u=secθu=\sec \theta , so we get,
tanθ=sec2θ1\tan \theta =\sqrt{{{\sec }^{2}}\theta -1}
tanθ=u21\tan \theta =\sqrt{{{u}^{2}}-1}
Also, θ=sec1(u)\theta ={{\sec }^{-1}}\left( u \right)
By substituting the value of tanθ\tan \theta and θ\theta in equation (ii), we get,
I=u21sec1(u)+CI=\sqrt{{{u}^{2}}-1}-{{\sec }^{-1}}\left( u \right)+C
Now by substituting u=exu={{e}^{x}} in the above equation, we get,
I=(ex)21sec1(ex)+CI=\sqrt{{{\left( {{e}^{x}} \right)}^{2}}-1}-{{\sec }^{-1}}\left( {{e}^{x}} \right)+C
Or, I=e2x1sec1(ex)+CI=\sqrt{{{e}^{2x}}-1}-{{\sec }^{-1}}\left( {{e}^{x}} \right)+C
**Therefore, we get e2x1dx=e2x1sec1(ex)+C\int{\sqrt{{{e}^{2x}}-1}dx=\sqrt{{{e}^{2x}}-1}-{{\sec }^{-1}}\left( {{e}^{x}} \right)+C}
**
Note: Here, students can cross-check their answers by differentiating the answer and checking if it is giving the original integral or not. Also, students can remember these substitutions in these cases to easily solve the questions of this type. Also, students should always convert the answer of the given integral in its original variable like here we have converted θ\theta back to x at the end.