Solveeit Logo

Question

Question: Evaluate the following integral \[\int\limits_{0}^{2}{\sqrt{4-{{x}^{2}}}dx}\]....

Evaluate the following integral 024x2dx\int\limits_{0}^{2}{\sqrt{4-{{x}^{2}}}dx}.

Explanation

Solution

In this question, in order to evaluate the integral 024x2dx\int\limits_{0}^{2}{\sqrt{4-{{x}^{2}}}dx}, we have to first substitute x=2sintx=2\sin t, then in the give integral the lower limit and upper limit of the variable xx should be changed tt by putting the value x=0x=0 and x=2x=2 in x=2sinyx=2\sin y to find the respective lower limit and upper limit of the variable when we are changing the variable from xx to yy. Also we have to determine the value of dxdx in terms of the variable yy and dydy. We will then evaluate the simplified integral in terms of variable yy.

Complete step by step answer:
Let II denote the integral 024x2dx\int\limits_{0}^{2}{\sqrt{4-{{x}^{2}}}dx}.
That is, let I=024x2dx...........(1)I=\int\limits_{0}^{2}{\sqrt{4-{{x}^{2}}}dx}...........(1).
Now let us suppose that x=2siny.....(2)x=2\sin y.....(2).
Now on differentiate x=2sinyx=2\sin y where differentiation of siny\sin y is equals to cosydy\cos ydy in order to determine the value of dxdx in terms of the variable yy and dydy, we will get
dx=2cosydy......(3)dx=2\cos ydy......(3).
Now we will evaluate the lower limit of the integral II by the value x=0x=0 in x=2sinyx=2\sin y.
Putting the value the value x=0x=0 in x=2sinyx=2\sin y , we get

& 0=2\sin y \\\ & \Rightarrow \sin y=0 \\\ \end{aligned}$$ Since we have $$\sin y=0$$ when $$y=0$$, thus the lower limit of the variable $$y$$ is $$0$$. We will now calculate the upper limit of the integral $$I$$ by the value $$x=2$$ in $$x=2\sin y$$. Putting the value the value $$x=2$$ in $$x=2\sin y$$ , we get $$\begin{aligned} & 1=2\sin y \\\ & \Rightarrow \sin y=1 \\\ \end{aligned}$$ Since we have $$\sin y=1$$ when $$y=\dfrac{\pi }{2}$$, thus the lower limit of the variable $$y$$ is $$\dfrac{\pi }{2}$$. Now on substituting equation (2) and equation (3) in equation (1) and by changing the lower limit and upper limit of variable $$y$$ in equation (1), we will get $$\begin{aligned} & I=\int\limits_{0}^{2}{\sqrt{4-{{x}^{2}}}dx} \\\ & =\int\limits_{0}^{\dfrac{\pi }{2}}{\sqrt{4-{{\left( 2\sin y \right)}^{2}}}2\cos ydy} \\\ & =\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \sqrt{4-4{{\sin }^{2}}y} \right)2\cos ydy} \\\ & =\int\limits_{0}^{\dfrac{\pi }{2}}{\sqrt{4\left( 1-{{\sin }^{2}}y \right)}2\cos ydy} \end{aligned}$$ Using $$1-{{\sin }^{2}}y={{\cos }^{2}}y$$ in the above integral, we get $$\begin{aligned} & I=\int\limits_{0}^{\dfrac{\pi }{2}}{\sqrt{4\left( {{\cos }^{2}}y \right)}2\cos ydy} \\\ & =\int\limits_{0}^{\dfrac{\pi }{2}}{\left( 2\cos y \right)2\cos ydy} \\\ & =4\int\limits_{0}^{\dfrac{\pi }{2}}{{{\cos }^{2}}ydy} \end{aligned}$$ We will now use the identity $$2{{\cos }^{2}}\theta =1+\cos 2\theta $$ in the above integral. That is on substituting $${{\cos }^{2}}y=\dfrac{1+\cos 2y}{2}$$ in the above integral, we will have $$\begin{aligned} & I=4\int\limits_{0}^{\dfrac{\pi }{2}}{{{\cos }^{2}}ydy} \\\ & =4\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \dfrac{1+\cos 2y}{2} \right)dy} \\\ & =\dfrac{4}{2}\int\limits_{0}^{\dfrac{\pi }{2}}{\left( 1+\cos 2y \right)dy} \\\ & =2\int\limits_{0}^{\dfrac{\pi }{2}}{\left( 1+\cos 2y \right)dy} \end{aligned}$$ Now we will evaluate the above integrals by parts, $$\begin{aligned} & I=2\int\limits_{0}^{\dfrac{\pi }{2}}{\left( 1+\cos 2y \right)dy} \\\ & =2\int\limits_{0}^{\dfrac{\pi }{2}}{1dy}+2\int\limits_{0}^{\dfrac{\pi }{2}}{\cos 2ydy} \\\ & =2\left[ y \right]_{0}^{\dfrac{\pi }{2}}+2\left[ \dfrac{\sin 2y}{2} \right]_{0}^{\dfrac{\pi }{2}} \\\ & =2\left( \dfrac{\pi }{2}-0 \right)+\left( \sin 2\left( \dfrac{\pi }{2} \right)-\sin 0 \right) \\\ \end{aligned}$$ Since with know that $$\sin \left( n\pi \right)=0\,\,\,\,\,\,\forall n\in Z$$, thus we get $$\begin{aligned} & I=2\left( \dfrac{\pi }{2}-0 \right)+\left( \sin 2\left( \dfrac{\pi }{2} \right)-\sin 0 \right) \\\ & =\pi +\left( 0-0 \right) \\\ & =\pi \end{aligned}$$ **Therefore we have $$\int\limits_{0}^{2}{\sqrt{4-{{x}^{2}}}dx}=\pi $$.** **Note:** In this problem, while evaluating the integrals $$\int\limits_{0}^{2}{\sqrt{4-{{x}^{2}}}dx}$$ we are changing the integral in terms of variable $$y$$ using $$x=2\sin y$$. Please take care of the fact that while evaluating the integral in terms of variable $$y$$ we have to change everything from variable $$x$$ to $$y$$ including the lower limit and the upper limit of the integral.