Solveeit Logo

Question

Question: Evaluate the following Integral: \(\int {\left( {{\text{cosec }}x} \right)} \log \left( {{\text{co...

Evaluate the following Integral:
(cosec x)log(cosec xcotx)dx\int {\left( {{\text{cosec }}x} \right)} \log \left( {{\text{cosec }}x - \cot x} \right)dx

Explanation

Solution

Hint – In this question Substitute log(cosec xcotx)\log \left( {{\text{cosec }}x - \cot x} \right) to
any other variable then differentiate this function w.r.t. x so, use this method to reach the
answer.

Given integration is
I=(cosec x)log(cosec xcotx)dxI = \int {\left( {{\text{cosec }}x} \right)} \log \left( {{\text{cosec }}x - \cot x} \right)dx…………….. (1)
Now, substitute log(cosec xcotx)=t\log \left( {{\text{cosec }}x - \cot x} \right) = t
Differentiate above equation w.r.t. x
ddxlog(cosec xcotx)=ddxt\dfrac{d}{{dx}}\log \left( {{\text{cosec }}x - \cot x} \right) = \dfrac{d}{{dx}}t
As we know that the differentiation of log(a+bx)=1a+bx(ddx(a+bx))\log \left( {a + bx} \right) = \dfrac{1}{{a + bx}}\left( {\dfrac{d}{{dx}}\left( {a + bx} \right)} \right) use this property in above differentiation we
have
1cosec xcotx(ddx(cosec xcotx))=dtdx\dfrac{1}{{{\text{cosec }}x - \cot x}}\left( {\dfrac{d}{{dx}}\left( {{\text{cosec }}x - \cot x} \right)} \right) = \dfrac{{dt}}{{dx}}
Now we know differentiation of ddxcosec x=cosec xcotx, ddxcotx=cosec2x\dfrac{d}{{dx}}{\text{cosec }}x = - {\text{cosec }}x\cot x,{\text{ }}\dfrac{d}{{dx}}\cot x = - {\text{cose}}{{\text{c}}^2}x so, substitute these values in
above equation we have,
1cosec xcotx(cosec xcotx(cosec2x))dxdx=dtdx\dfrac{1}{{{\text{cosec }}x - \cot x}}\left( { - {\text{cosec }}x\cot x - \left( { - {\text{cose}}{{\text{c}}^2}x} \right)} \right)\dfrac{{dx}}{{dx}} = \dfrac{{dt}}{{dx}}
Now take (cosec x)\left( {{\text{cosec }}x} \right) common from numerator we have
cosec xcosec xcotx(cotx+cosecx)dx=dt cosec x dx=dt  \dfrac{{{\text{cosec }}x}}{{{\text{cosec }}x - \cot x}}\left( { - \cot x + {\text{cosec}}x} \right)dx = dt \\\ \Rightarrow {\text{cosec }}x{\text{ }}dx = dt \\\
Now substitute this value in equation (1) we have.
I=(cosec x)log(cosec xcotx)dx I=t dt  I = \int {\left( {{\text{cosec }}x} \right)} \log \left( {{\text{cosec }}x - \cot x} \right)dx \\\ I = \int {t{\text{ }}dt} \\\
Now integrate the above equation we have
I=t22+cI = \dfrac{{{t^2}}}{2} + c , where c is some arbitrary integration constant.
Now re-substitute the value of tt we have
I=[log(cosec xcotx)]22+cI = \dfrac{{{{\left[ {\log \left( {{\text{cosec }}x - \cot x} \right)} \right]}^2}}}{2} + c
So, this is the required integration of the given integral.

Note – In such types of questions the key concept we have to remember is to always
substitute some part of integration to any other variable as above then differentiate this
equation w.r.t. given variable and re-substitute this value in the given integral then integrate
using basic property of integration, we will get the required answer.