Solveeit Logo

Question

Question: Evaluate the following integral \[\int{\dfrac{{{x}^{2}}-1}{{{\left( x-1 \right)}^{2}}\left( x+3 \rig...

Evaluate the following integral x21(x1)2(x+3)dx\int{\dfrac{{{x}^{2}}-1}{{{\left( x-1 \right)}^{2}}\left( x+3 \right)}dx}

Explanation

Solution

We start solving this problem by simplifying the numerator using the formula a2b2=(a+b)(ab){{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right). Then we simplify the expression. Then after simplification, we consider the denominator as some other variable t and change the variables of integral. Then we integrate it with respect to the new variable to get the result. At last, we change that result in terms of the given question to obtain the final answer. We use the formula 1xdx=ln(x)+C\int{\dfrac{1}{x}dx=\ln \left( \left| x \right| \right)+C} for integration and the formula ddx(xn)=n×xn1\dfrac{d}{dx}\left( {{x}^{n}} \right)=n\times {{x}^{n-1}}, ddx(constant)=0\dfrac{d}{dx}\left( \text{constant} \right)=0 for differentiation while solving the problem.

Complete step by step answer:
Let us start by simplifying the given expression x21(x1)2(x+3)\dfrac{{{x}^{2}}-1}{{{\left( x-1 \right)}^{2}}\left( x+3 \right)}.
Now, let us consider the formula a2b2=(a+b)(ab){{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right).
By using the above formula, we write x21{{x}^{2}}-1 as (x+1)(x1)\left( x+1 \right)\left( x-1 \right).
So, we can write it as
(x+1)(x1)(x1)2(x+3)dx\Rightarrow \int{\dfrac{\left( x+1 \right)\left( x-1 \right)}{{{\left( x-1 \right)}^{2}}\left( x+3 \right)}dx}
Now, we consider the formula a2=a×a{{a}^{2}}=a\times a.
By using the above formula, we write (x1)2{{\left( x-1 \right)}^{2}} as (x1)(x1)\left( x-1 \right)\left( x-1 \right)
Then, we get
(x+1)(x1)(x1)(x1)(x+3)dx\int{\dfrac{\left( x+1 \right)\left( x-1 \right)}{\left( x-1 \right)\left( x-1 \right)\left( x+3 \right)}dx}
By cancelling (x1)\left( x-1 \right) in numerator and denominator, we get

(x+1)(x1)(x+3)dx x+1x2+3xx3dx x+1x2+2x3dx....................(1) \begin{aligned} & \Rightarrow \int{\dfrac{\left( x+1 \right)}{\left( x-1 \right)\left( x+3 \right)}dx} \\\ & \Rightarrow \int{\dfrac{x+1}{{{x}^{2}}+3x-x-3}dx} \\\ & \Rightarrow \int{\dfrac{x+1}{{{x}^{2}}+2x-3}dx}....................\left( 1 \right) \\\ \end{aligned}

Now, let us consider the quadratic expression x2+2x3{{x}^{2}}+2x-3 as some variable tt.
So, x2+2x3=t...................(2){{x}^{2}}+2x-3=t...................\left( 2 \right)
We differentiate both sides of above equation with respective to x, we get
ddx(x2+2x3)=dtdx ddx(x2)+ddx(2x)ddx(3)=dtdx 2x+20=dtdx 2x+2=dtdx \begin{aligned} & \Rightarrow \dfrac{d}{dx}\left( {{x}^{2}}+2x-3 \right)=\dfrac{dt}{dx} \\\ & \Rightarrow \dfrac{d}{dx}\left( {{x}^{2}} \right)+\dfrac{d}{dx}\left( 2x \right)-\dfrac{d}{dx}\left( 3 \right)=\dfrac{dt}{dx} \\\ & \Rightarrow 2x+2-0=\dfrac{dt}{dx} \\\ & \Rightarrow 2x+2=\dfrac{dt}{dx} \\\ \end{aligned}
Now, we take 2 as common on left hand side of above equation, we get
2(x+1)=dtdx2\left( x+1 \right)=\dfrac{dt}{dx}
x+1=dtdx12 (x+1)dx=12dt...............(3) \begin{aligned} & \Rightarrow x+1=\dfrac{dt}{dx}\dfrac{1}{2} \\\ & \Rightarrow \left( x+1 \right)dx=\dfrac{1}{2}dt...............\left( 3 \right) \\\ \end{aligned}
Now, from equations (1), (2) and (3), we get
x+1x2+2x3dx=1tdt2 x+1x2+2x3dx=12tdt \begin{aligned} & \Rightarrow \int{\dfrac{x+1}{{{x}^{2}}+2x-3}dx}=\int{\dfrac{1}{t}\dfrac{dt}{2}} \\\ & \Rightarrow \int{\dfrac{x+1}{{{x}^{2}}+2x-3}dx}=\int{\dfrac{1}{2t}dt} \\\ \end{aligned}
As 12\dfrac{1}{2} is constant, we can write it outside the integral, now we get
x+1x2+2x3dx=121tdt\Rightarrow \int{\dfrac{x+1}{{{x}^{2}}+2x-3}dx}=\dfrac{1}{2}\int{\dfrac{1}{t}dt}
Now, let us consider the formula 1xdx=ln(x)+C\int{\dfrac{1}{x}dx=\ln \left( \left| x \right| \right)+C} .
By using the above formula, we can write
x+1x2+2x3dx=12(ln(t)+C) x+1x2+2x3dx=12ln(t)+C \begin{aligned} & \Rightarrow \int{\dfrac{x+1}{{{x}^{2}}+2x-3}dx}=\dfrac{1}{2}\left( \ln \left( \left| t \right| \right)+C \right) \\\ & \Rightarrow \int{\dfrac{x+1}{{{x}^{2}}+2x-3}dx}=\dfrac{1}{2}\ln \left( \left| t \right| \right)+C \\\ \end{aligned}
Where C is some constant.
Now, by replacing tt with x2+2x3{{x}^{2}}+2x-3, we get
x+1x2+2x3dx=12ln(x2+2x3)+C\Rightarrow \int{\dfrac{x+1}{{{x}^{2}}+2x-3}dx}=\dfrac{1}{2}\ln \left( \left| {{x}^{2}}+2x-3 \right| \right)+C
Therefore, x21(x1)2(x+3)dx=12ln(x2+2x3)+C\int{\dfrac{{{x}^{2}}-1}{{{\left( x-1 \right)}^{2}}\left( x+3 \right)}dx}=\dfrac{1}{2}\ln \left( \left| {{x}^{2}}+2x-3 \right| \right)+C

Hence, the answer is 12ln(x2+2x3)+C\dfrac{1}{2}\ln \left( \left| {{x}^{2}}+2x-3 \right| \right)+C.

Note: There is a possibility of making a mistake while changing the variables in the integral, one might forget to find the value of dx in terms of dt and substitute it in the integral in place of dx. Instead of that they might change the whole expression into a function of t and write dx as dt without substituting the actual value.