Solveeit Logo

Question

Question: Evaluate the following integral: \[\int{\dfrac{\cos 2x-\cos 2a}{\cos x-\cos a}dx}\] ....

Evaluate the following integral: cos2xcos2acosxcosadx\int{\dfrac{\cos 2x-\cos 2a}{\cos x-\cos a}dx} .

Explanation

Solution

We will first apply trigonometric properties of cosθ\cos \theta given by cos2θ=2cos2θ1\cos 2\theta =2{{\cos }^{2}}\theta -1 on the given integral which will help us to simplify the given integral and after that we will apply basic mathematics property like a2b2=(a+b).(ab){{a}^{2}}-{{b}^{2}}=\left( a+b \right).\left( a-b \right) , this will help to further simplify and then we can cut out the common terms from numerator and denominator which will leave us with basic integral of cosθ\cos \theta .

Complete step-by-step solution:
We will first apply the property of cosθ\cos \theta , Now we know that:
cos2θ=2cos2θ1\cos 2\theta =2{{\cos }^{2}}\theta -1
We will apply the above property on the numerator part of the given integral.
Now,
cos2x=2cos2x1\cos 2x=2{{\cos }^{2}}x-1 and cos2a=2cos2a1\cos 2a=2{{\cos }^{2}}a-1
Substituting these values in the given integral: cos2xcos2acosxcosadx\int{\dfrac{\cos 2x-\cos 2a}{\cos x-\cos a}dx}
(2cos2x1)(2cos2a1)cosxcosadx=2cos2x12cos2a+1cosxcosadx=2cos2x2cos2acosxcosadx\int{\dfrac{\left( 2{{\cos }^{2}}x-1 \right)-\left( 2{{\cos }^{2}}a-1 \right)}{\cos x-\cos a}dx}=\int{\dfrac{2{{\cos }^{2}}x-1-2{{\cos }^{2}}a+1}{\cos x-\cos a}dx}=\int{\dfrac{2{{\cos }^{2}}x-2{{\cos }^{2}}a}{\cos x-\cos a}dx}
Taking out the constant: af(x)dx=af(x)dx\int{a}\cdot f\left( x \right)dx=a\cdot \int{f}\left( x \right)dx
We will then have: 2cos2x2cos2acosxcosadx=2cos2xcos2acosxcosadx .............. Equation 1. \int{\dfrac{2{{\cos }^{2}}x-2{{\cos }^{2}}a}{\cos x-\cos a}dx}=2\int{\dfrac{{{\cos }^{2}}x-{{\cos }^{2}}a}{\cos x-\cos a}dx}\text{ }..............\text{ Equation 1}\text{. }
Now we know that: a2b2=(a+b).(ab){{a}^{2}}-{{b}^{2}}=\left( a+b \right).\left( a-b \right)
Applying it in the equation 1: 2cos2xcos2acosxcosadx=2(cosxcosa).(cosx+cosa)cosxcosadx2\int{\dfrac{{{\cos }^{2}}x-{{\cos }^{2}}a}{\cos x-\cos a}dx}=2\int{\dfrac{\left( \cos x-\cos a \right).\left( \cos x+\cos a \right)}{\cos x-\cos a}dx}
After cancelling out the terms, we will be left with: 2(cosx+cosa)dx2\int{\left( \cos x+\cos a \right)dx}
Now we know the basic property of integration when it is given in the following form: (f(x)+g(x))dx=f(x)dx+g(x)dx\int{\left( f\left( x \right)+g\left( x \right) \right)}dx=\int{f\left( x \right)dx+}\int{g\left( x \right)dx}
We get:2(cosx+cosa)dx=2[cosxdx+cosadx]2\int{\left( \cos x+\cos a \right)dx}=2\left[ \int{\cos xdx+\int{\cos adx}} \right]
We will now apply the following two formulas for integration:
cosθdθ=sinθ dx=x \begin{aligned} & \Rightarrow \int{\cos \theta d\theta =\sin \theta } \\\ & \Rightarrow \int{dx=x} \\\ \end{aligned}
After applying the above two formulas in our question:
2[cosxdx+cosadx]=2[sinx+xcosa]+C2\left[ \int{\cos xdx+\int{\cos adx}} \right]=2\left[ \sin x+x\cos a \right]+C
Therefore the result will be: cos2xcos2acosxcosadx=2[sinx+xcosa]+C\int{\dfrac{\cos 2x-\cos 2a}{\cos x-\cos a}dx}=2\left[ \sin x+x\cos a \right]+C

Note: Please note that cosa\cos a will not be integrated as we are finding out the integral with respect to the variable x, hence cos a will remain constant and the integral will give x as an output in the latter part of the integral. Do not get confused between the following integrations cosθdθ=sinθ\int{\cos \theta d\theta =\sin \theta } and sinθdθ=cosθ\int{\sin \theta d\theta =-\cos \theta } ; students might make mistakes with the negative sign in the output.