Question
Question: Evaluate the following integral: \[\int{\dfrac{\cos 8x-\cos 7x}{1+2\cos 5x}dx}\]....
Evaluate the following integral: ∫1+2cos5xcos8x−cos7xdx.
Solution
Hint: To evaluate the integral, we have to convert the terms in it to simpler terms using some basic trigonometric formulas and identities. Some of which we are going to need in this question are given below:
cosa−cosb=−2sin(2a+b)sin(2a−b)
cos2x=2cos2x−1=1−2sin2x
sin3x=3sinx−4sin3x
2sinAsinB=cos(A−B)−cos(a+B)
Complete step-by-step answer:
The integral given in the question is ∫1+2cos5xcos8x−cos7xdx.
In the first step, we will apply the identity cosa−cosb=−2sin(2a+b)sin(2a−b) in the numerator. So, we can write cos8x−cos7x as cos8x−cos7x=−2sin(28x+7x)sin(28x−7x)
⇒cos8x−cos7x=−2sin(215x)sin(2x)
Now, in the second step, we are going to write cos5x in a different form with the help of the identity cos2x=2cos2x−1=1−2sin2x. So, cos5x can be written as cos5x=1−2sin225x.
Now, we can substitute the values of the modified numerator and denominator into the given integral. After substitution, we get:
∫1+2(1−2sin225x)−2sin(215x)sin(2x)dx
Now, we have sin(215x) in the numerator. We are going to write it in the form of sin25x and according to identity sin3x=3sinx−4sin3x, we can write sin(215x)=sin(3×25x) as sin(215x)=3sin25x−4sin325x
After substituting this value in above integral, we get:
∫1+2(1−2sin225x)−2(3sin25x−4sin325x)sin(2x)dx
Now, we take sin25x common from the numerator. After this, we get:
∫1+2(1−2sin225x)−2sin25x(3−4sin225x)sin(2x)dx
⇒∫3−4sin225x−2sin25x(3−4sin225x)sin(2x)dx
Now, we cancel the common terms from numerator and denominator. After cancelling, we get: ⇒∫−2sin25xsin(2x)dx
Taking (-1) out of the integral, we get: −∫2sin25xsin(2x)dx.
Now, with the help of identity 2sinAsinB=cos(A−B)−cos(a+B), we can write 2sin25xsin(2x) as 2sin25xsin2x=cos(25x−2x)−cos(25x+2x). Simplifying, we get, 2sin25xsin2x=cos(2x)−cos(3x)
We put this value in the integral and we get: −∫(cos(2x)−cos(3x))dx. After simplification, we get: ∫cos3xdx−∫cos2xdx
Above integral is of simple form, so we can integrate it. Therefore, we get: ∫cos3xdx−∫cos2xdx=3sin3x−2sin2x+c
⇒∫1+2cos5xcos8x−cos7xdx=3sin3x−2sin2x+c is our required answer.
Note: The student must not forget to write + c at the end of integration since it is an indefinite integration. There is a possibility that the student might use different identities and try to simplify it. This will lead to a waste of time, so the student must first analyse the form of terms and then decide which identity to apply. The student must be careful in the signs on the identity, any change will lead to affect the answer.