Solveeit Logo

Question

Question: Evaluate the following integral \(\int {\dfrac{{\sin 3x}}{{\cos 4x\cos x}}dx} \) is equal to \(\...

Evaluate the following integral
sin3xcos4xcosxdx\int {\dfrac{{\sin 3x}}{{\cos 4x\cos x}}dx} is equal to
(a)14logcos4xlogcosx+c\left( a \right) - \dfrac{1}{4}\log \left| {\cos 4x} \right| - \log \left| {\cos x} \right| + c
(b)14logcos4x+logcosx+c\left( b \right) - \dfrac{1}{4}\log \left| {\cos 4x} \right| + \log \left| {\cos x} \right| + c
(c)14logsin4x+logcosx+c\left( c \right) - \dfrac{1}{4}\log \left| {\sin 4x} \right| + \log \left| {\cos x} \right| + c
(c)14logsin4xlogcosx+c\left( c \right)\dfrac{1}{4}\log \left| {\sin 4x} \right| - \log \left| {\cos x} \right| + c

Explanation

Solution

In this particular question write sin 3x = sin (4x - x), then apply the basic sine rule i.e. sin (A – B) = sin A cos B – cos A sin B, then use the property that, tan x = (sin x/cos x), so use these properties to reach the solution of the question.

Complete step-by-step answer:
Given integral
sin3xcos4xcosxdx\int {\dfrac{{\sin 3x}}{{\cos 4x\cos x}}dx}
Let, I=sin3xcos4xcosxdxI = \int {\dfrac{{\sin 3x}}{{\cos 4x\cos x}}dx}
Now sin 3x is written as, sin (4x - x) so we have,
I=sin(4xx)cos4xcosxdx\Rightarrow I = \int {\dfrac{{\sin \left( {4x - x} \right)}}{{\cos 4x\cos x}}dx}
Now as we know that sin (A – B) = sin A cos B – cos A sin B so use this property in the above integral we have,
I=sin4xcosxcos4xsinxcos4xcosxdx\Rightarrow I = \int {\dfrac{{\sin 4x\cos x - \cos 4x\sin x}}{{\cos 4x\cos x}}dx}
Now separate the integral and cancel out the common terms from the numerator and denominator we have,
I=sin4xcos4xdxsinxcosxdx\Rightarrow I = \int {\dfrac{{\sin 4x}}{{\cos 4x}}dx} - \int {\dfrac{{\sin x}}{{\cos x}}dx}
Now as we know that tan x = (sin x/cos x) so use this property in the above integral we have,
I=tan4xdxtanxdx\Rightarrow I = \int {\tan 4xdx} - \int {\tan xdx}
Now as we know that tanaxdx=logcosaxa+c\int {\tan ax} dx = - \dfrac{{\log \left| {\cos ax} \right|}}{a} + c where c is some arbitrary integration constant, so use this property in the above integral we have,
I=14logcos4x(11logcosx)+c\Rightarrow I = - \dfrac{1}{4}\log \left| {\cos 4x} \right| - \left( { - \dfrac{1}{1}\log \left| {\cos x} \right|} \right) + c
I=14logcos4x+logcosx+c\Rightarrow I = - \dfrac{1}{4}\log \left| {\cos 4x} \right| + \log \left| {\cos x} \right| + c
So this is the required integral.

So, the correct answer is “Option b”.

Note: Whenever we face such types of questions the key concept we have to remember is that always recall the integration of tan ax which is given as tanaxdx=logcosaxa+c\int {\tan ax} dx = - \dfrac{{\log \left| {\cos ax} \right|}}{a} + c where c is some arbitrary integration constant, so simply apply this as above we will get the required answer.