Solveeit Logo

Question

Question: Evaluate the following integral \(\int{\dfrac{1-\cos x}{1+\cos x}dx}\)...

Evaluate the following integral 1cosx1+cosxdx\int{\dfrac{1-\cos x}{1+\cos x}dx}

Explanation

Solution

First of all we will find the value of cosx\cos x by converting it into cos(x2+x2)\cos \left( \dfrac{x}{2}+\dfrac{x}{2} \right) and then we will use the formula cos(A+B)=cosA.cosBSinA.sinB\cos \left( A+B \right)=\cos A.\cos B-\operatorname{Sin}A.\sin B to find the value of cosx\cos x. Now we will calculate the values of 1cosx1-\cos x and 1+cosx1+\cos x individually by using the value cosx\cos x obtained above. Here we will use the trigonometric identity sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1 to find the values of 1cosx1-\cos x and 1+cosx1+\cos x. From the values of 1cosx1-\cos x and 1+cosx1+\cos x we will calculate the value of 1cosx1+cosx\dfrac{1-\cos x}{1+\cos x}, and then we will integrate the obtained value to get the result.

Complete step-by-step solution:
Given that, 1cosx1+cosxdx\int{\dfrac{1-\cos x}{1+\cos x}dx}
We are going to write the xx value as x2+x2\dfrac{x}{2}+\dfrac{x}{2} in cos\cos function to find the value of cosx\cos x, then we will get
cosx=cos(x2+x2)\cos x=\cos \left( \dfrac{x}{2}+\dfrac{x}{2} \right)
We know the formula cos(A+B)=cosA.cosBSinA.sinB\cos \left( A+B \right)=\cos A.\cos B-\operatorname{Sin}A.\sin B, then the value of cos(x2+x2)\cos \left( \dfrac{x}{2}+\dfrac{x}{2} \right) will be written as
cosx=cos(x2+x2) =cosx2.cosx2sinx2.sinx2 \begin{aligned} & \cos x=\cos \left( \dfrac{x}{2}+\dfrac{x}{2} \right) \\\ & =\cos \dfrac{x}{2}.\cos \dfrac{x}{2}-\sin \dfrac{x}{2}.\sin \dfrac{x}{2} \\\ \end{aligned}
We know that a.a=a2a.a={{a}^{2}}, hence the values of cosx2.cosx2\cos \dfrac{x}{2}.\cos \dfrac{x}{2} and sinx2.sinx2\sin \dfrac{x}{2}.\sin \dfrac{x}{2} will be written as
cosx=cosx2.cosx2sinx2.sinx2 =cos2x2sin2x2 \begin{aligned} & \cos x=\cos \dfrac{x}{2}.\cos \dfrac{x}{2}-\sin \dfrac{x}{2}.\sin \dfrac{x}{2} \\\ & ={{\cos }^{2}}\dfrac{x}{2}-{{\sin }^{2}}\dfrac{x}{2} \\\ \end{aligned}
Here we got the value of cosx\cos x as cos2x2sin2x2{{\cos }^{2}}\dfrac{x}{2}-{{\sin }^{2}}\dfrac{x}{2}, i.e.
cosx=cos2x2sin2x2....(i)\cos x={{\cos }^{2}}\dfrac{x}{2}-{{\sin }^{2}}\dfrac{x}{2}....\left( \text{i} \right)
Now we are going to calculate the values of 1cosx1-\cos x and 1+cosx1+\cos x from the above equation.
We will add 11 on both sides of equation (i)\left( \text{i} \right) to get the value of 1+cosx1+\cos x, then
cosx=cos2x2sin2x2 1+cosx=1+cos2x2sin2x2 \begin{aligned} & \cos x={{\cos }^{2}}\dfrac{x}{2}-{{\sin }^{2}}\dfrac{x}{2} \\\ &\Rightarrow 1+\cos x=1+{{\cos }^{2}}\dfrac{x}{2}-{{\sin }^{2}}\dfrac{x}{2} \\\ \end{aligned}
Rearranging the term in Left Hand Side as
1+cosx=cos2x2+(1sin2x2)1+\cos x={{\cos }^{2}}\dfrac{x}{2}+\left( 1-{{\sin }^{2}}\dfrac{x}{2} \right)
We have trigonometric identity sin2A+cos2A=1{{\sin }^{2}}A+{{\cos }^{2}}A=1. From this identity we can get the value1sin2A=cos2A1-{{\sin }^{2}}A={{\cos }^{2}}A. Then we will have
1+cosx=cos2x2+(1sin2x2) =cos2x2+cos2x2 \begin{aligned} & 1+\cos x={{\cos }^{2}}\dfrac{x}{2}+\left( 1-{{\sin }^{2}}\dfrac{x}{2} \right) \\\ & ={{\cos }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2} \\\ \end{aligned}
We know that a+a=2aa+a=2a, then we will get
1+cosx=cos2x2+cos2x2 1+cosx=2cos2x2....(ii) \begin{aligned} & 1+\cos x={{\cos }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2} \\\ &\Rightarrow 1+\cos x=2{{\cos }^{2}}\dfrac{x}{2}....\left( \text{ii} \right) \\\ \end{aligned}
Now we are going to subtract the value of cosx\cos x obtained in equation (i)\left( \text{i} \right) from 11 to get the value of 1cosx1-\cos x, then we will have
1cosx=1(cos2x2sin2x2)1-\cos x=1-\left( {{\cos }^{2}}\dfrac{x}{2}-{{\sin }^{2}}\dfrac{x}{2} \right)
When we multiplied a negative sign/integer with positive sign/integer we will get negative sign/integer at the same time we will get positive sign/integer when we multiplied a negative sign/integer with the negative sign/integer, then
1cosx=1(cos2x2sin2x2) =1cos2x2+sin2x2 \begin{aligned} & 1-\cos x=1-\left( {{\cos }^{2}}\dfrac{x}{2}-{{\sin }^{2}}\dfrac{x}{2} \right) \\\ & =1-{{\cos }^{2}}\dfrac{x}{2}+{{\sin }^{2}}\dfrac{x}{2} \\\ \end{aligned}
We have trigonometric identity sin2A+cos2A=1{{\sin }^{2}}A+{{\cos }^{2}}A=1. From this identity we can get the value1cos2A=sin2A1-{{\cos }^{2}}A={{\sin }^{2}}A. Then we will have
1cosx=1cos2x2+sin2x2 1cosx=sin2x2+sin2x2 1cosx=2sin2x2.....(iii) \begin{aligned} & 1-\cos x=1-{{\cos }^{2}}\dfrac{x}{2}+{{\sin }^{2}}\dfrac{x}{2} \\\ &\Rightarrow 1-\cos x={{\sin }^{2}}\dfrac{x}{2}+{{\sin }^{2}}\dfrac{x}{2} \\\ &\Rightarrow 1-\cos x=2{{\sin }^{2}}\dfrac{x}{2}.....\left( \text{iii} \right) \\\ \end{aligned}
From the equations (ii)\left( \text{ii} \right) and (iii)\left( \text{iii} \right) the value of 1cosx1+cosx\dfrac{1-\cos x}{1+\cos x} is
1cosx1+cosx=2sin2x22cos2x2 =tan2x2 \begin{aligned} & \dfrac{1-\cos x}{1+\cos x}=\dfrac{2{{\sin }^{2}}\dfrac{x}{2}}{2{{\cos }^{2}}\dfrac{x}{2}} \\\ & ={{\tan }^{2}}\dfrac{x}{2} \\\ \end{aligned}
We have another trigonometric identity sec2Atan2A=1{{\sec }^{2}}A-{{\tan }^{2}}A=1. From this identity we have the value tan2A=sec2A1{{\tan }^{2}}A={{\sec }^{2}}A-1, then
1cosx1+cosx=tan2x2 =sec2x21 \begin{aligned} & \dfrac{1-\cos x}{1+\cos x}={{\tan }^{2}}\dfrac{x}{2} \\\ & ={{\sec }^{2}}\dfrac{x}{2}-1 \\\ \end{aligned}
Now integrating the above equation, then
1cosx1+cosxdx=(sec2x21)dx =sec2x2dxdx \begin{aligned} & \int{\dfrac{1-\cos x}{1+\cos x}dx}=\int{\left( {{\sec }^{2}}\dfrac{x}{2}-1 \right)}dx \\\ & =\int{{{\sec }^{2}}\dfrac{x}{2}dx}-\int{dx} \\\ \end{aligned}
We have sec2AdA=tanA+C\int{{{\sec }^{2}}A}dA=\tan A+C and 1dx=x+C\int{1dx=x+C}, substituting above value in the integration, then
1cosx1+cosxdx=2tanx2x+C\int{\dfrac{1-\cos x}{1+\cos x}dx}=2\tan \dfrac{x}{2}-x+C
Hence, we have 1cosx1+cosxdx=2tanx2x+C\int{\dfrac{1-\cos x}{1+\cos x}dx}=2\tan \dfrac{x}{2}-x+C

Note: In this problem we do many substitutions from trigonometric identity sin2A+cos2A=1{{\sin }^{2}}A+{{\cos }^{2}}A=1, while substituting value there is a chance of making a mistake when you don’t write this identity in the problem. It is advisable to write the trigonometric identities when we are going to use that identity.