Solveeit Logo

Question

Question: Evaluate the following integral: \(\int {\dfrac{1}{{{x^{\dfrac{2}{3}}}\left( {{x^{\dfrac{1}{3}}} -...

Evaluate the following integral:
1x23(x131)dx\int {\dfrac{1}{{{x^{\dfrac{2}{3}}}\left( {{x^{\dfrac{1}{3}}} - 1} \right)}}} dx.

Explanation

Solution

Hint: Put x13=t{x^{\dfrac{1}{3}}} = t in the integral to solve it and find the solution.

Complete step-by-step answer:

Given in the question the integral-
1x23(x131)dx\int {\dfrac{1}{{{x^{\dfrac{2}{3}}}\left( {{x^{\dfrac{1}{3}}} - 1} \right)}}} dx
Let us put x13=t{x^{\dfrac{1}{3}}} = t.
Differentiate w.r.t x, we get-
x13=t 13x23dx=dt(1)  {x^{\dfrac{1}{3}}} = t \\\ \Rightarrow \dfrac{1}{3}{x^{\dfrac{{ - 2}}{3}}}dx = dt - (1) \\\
Put equation in the above integral, we get-
1x23(t1).dt13x23 1x23(t1).3dtx23 1(t1).3dt 3logt1+C  \int {\dfrac{1}{{{x^{\dfrac{2}{3}}}\left( {t - 1} \right)}}} .\dfrac{{dt}}{{\dfrac{1}{3}{x^{\dfrac{{ - 2}}{3}}}}} \\\ \Rightarrow \int {\dfrac{1}{{{x^{\dfrac{2}{3}}}\left( {t - 1} \right)}}} .\dfrac{{3dt}}{{{x^{\dfrac{{ - 2}}{3}}}}} \\\ \Rightarrow \int {\dfrac{1}{{\left( {t - 1} \right)}}} .3dt \\\ \Rightarrow 3\log |t - 1| + C \\\
Putting t = x13{x^{\dfrac{1}{3}}}, we get the value of the above integral as-
3logx131+C3\log |{x^{\dfrac{1}{3}}} - 1| + C .
Hence, the answer is 3logx131+C3\log |{x^{\dfrac{1}{3}}} - 1| + C.

Note: Whenever such types of questions appear then write the integral given in the question, substitute x13=t{x^{\dfrac{1}{3}}} = t and differentiate it wrt to x. Then put x13=t{x^{\dfrac{1}{3}}} = t in the given integral. The integral will transform into a simpler form as mentioned in the solution and then integrate it to find the value. Again, put t = x13{x^{\dfrac{1}{3}}}, in order to get the final answer.