Solveeit Logo

Question

Question: Evaluate the following integral \(\int{\dfrac{{{\operatorname{Sin}}^{6}}x+{{\operatorname{Cos}}^{6...

Evaluate the following integral
Sin6x+Cos6xSin2xCos2xdx\int{\dfrac{{{\operatorname{Sin}}^{6}}x+{{\operatorname{Cos}}^{6}}x}{{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x}dx}

Explanation

Solution

Write the term in the numerator Sin6x+Cos6x{{\operatorname{Sin}}^{6}}x+{{\operatorname{Cos}}^{6}}x as (Sin2x)3+(Cos2x)3{{\left( {{\operatorname{Sin}}^{2}}x \right)}^{3}}+{{\left( {{\operatorname{Cos}}^{2}}x \right)}^{3}}, we can see that it became in the form of a3+b3{{a}^{3}}+{{b}^{3}} and then apply the formula of a3+b3{{a}^{3}}+{{b}^{3}} i.e. a3+b3=(a+b)(a2+b2ab){{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}+{{b}^{2}}-ab \right) . Simply it further and then integrate the resulting terms separately using the basic formulae of integration.

Complete step by step answer:
The given integrand seems complicated and it can not be integrated directly.
So, first we have to simplify it.
Consider, the given integral,
Sin6x+Cos6xSin2xCos2xdx\int{\dfrac{{{\operatorname{Sin}}^{6}}x+{{\operatorname{Cos}}^{6}}x}{{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x}dx}
We will first write the numerator of the integrand as (Sin2x)3+(Cos2x)3{{\left( {{\operatorname{Sin}}^{2}}x \right)}^{3}}+{{\left( {{\operatorname{Cos}}^{2}}x \right)}^{3}} and get the integral in form,
(Sin2x)3+(Cos2x)3Sin2xCos2xdx\int{\dfrac{{{\left( {{\operatorname{Sin}}^{2}}x \right)}^{3}}+{{\left( {{\operatorname{Cos}}^{2}}x \right)}^{3}}}{{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x}dx}
Now, we can see that the numerator of the integrand is in the form, a3+b3{{a}^{3}}+{{b}^{3}}
We know that the formula of a3+b3{{a}^{3}}+{{b}^{3}} is a3+b3=(a+b)(a2+b2ab){{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}+{{b}^{2}}-ab \right)
Now, applying this formula to the numerator of integrand , we get
(Sin2x+Cos2x)(Sin4x+Cos4xSin2xCos2x)Sin2xCos2xdx\int{\dfrac{\left( {{\operatorname{Sin}}^{2}}x+{{\operatorname{Cos}}^{2}}x \right)\left( {{\operatorname{Sin}}^{4}}x+{{\operatorname{Cos}}^{4}}x-{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x \right)}{{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x}dx}
We know from the trigonometric identities that
Sin2x+Cos2x=1{{\operatorname{Sin}}^{2}}x+{{\operatorname{Cos}}^{2}}x=1
So, now the integral becomes,
(Sin4x+Cos4xSin2xCos2x)Sin2xCos2xdx\int{\dfrac{\left( {{\operatorname{Sin}}^{4}}x+{{\operatorname{Cos}}^{4}}x-{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x \right)}{{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x}dx}
Now, adding and subtracting 2Sin2xCos2x2{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x to the numerator of the integrand, we get
(Sin4x+Cos4x+2Sin2xCos2x3Sin2xCos2x)Sin2xCos2xdx\int{\dfrac{\left( {{\operatorname{Sin}}^{4}}x+{{\operatorname{Cos}}^{4}}x+2{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x-3{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x \right)}{{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x}dx}
Now, If you see the first 3 terms of numerator, it is an identity
a2+b2+2ab=(a+b)2{{a}^{2}}+{{b}^{2}}+2ab={{\left( a+b \right)}^{2}}
So, using this identity the integral becomes,
((Sin2x+Cos2x)23Sin2xCos2x)Sin2xCos2xdx\int{\dfrac{\left( {{\left( {{\operatorname{Sin}}^{2}}x+{{\operatorname{Cos}}^{2}}x \right)}^{2}}-3{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x \right)}{{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x}dx}
Again using the trigonometric identity, we get
13Sin2xCos2xSin2xCos2xdx\int{\dfrac{1-3{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x}{{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x}dx}
Now, separating the terms in the integrand, we get
(1Sin2xCos2x3)dx\int{\left( \dfrac{1}{{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x}-3 \right)dx}
(1Cos2x+1Sin2x3)dx\int{\left( \dfrac{1}{{{\operatorname{Cos}}^{2}}x}+\dfrac{1}{{{\operatorname{Sin}}^{2}}x}-3 \right)dx}
We know from trigonometric identities that,
1Cos2x=Sec2x\dfrac{1}{{{\operatorname{Cos}}^{2}}x}={{\operatorname{Sec}}^{2}}x and 1Sin2x=Cosec2x\dfrac{1}{{{\operatorname{Sin}}^{2}}x}={{\operatorname{Cosec}}^{2}}x
Using these identities in the last step, we get
(Sec2x+Cosec2x3)dx\int{\left( {{\operatorname{Sec}}^{2}}x+{{\operatorname{Cosec}}^{2}}x-3 \right)dx}
Now, we can use the basic integration formulas,
Sec2xdx=Tanx+C\int{{{\operatorname{Sec}}^{2}}xdx=}\operatorname{Tan}x+C , Cosec2xdx=Cotx+C\int{{{\operatorname{Cosec}}^{2}}xdx=-\operatorname{Cot}x}+C
And get the value of integral
=TanxCotx3x+C=\operatorname{Tan}x-\operatorname{Cot}x-3x+C

Hence,
Sin6x+Cos6xSin2xCos2xdx\int{\dfrac{{{\operatorname{Sin}}^{6}}x+{{\operatorname{Cos}}^{6}}x}{{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x}dx} =TanxCotx3x+C=\operatorname{Tan}x-\operatorname{Cot}x-3x+C

Note: The alternate method to solve this integral is by separating the integrand into 2 terms i.e.
Sin4xCos2x+Cos4xSin2x\dfrac{{{\operatorname{Sin}}^{4}}x}{{{\operatorname{Cos}}^{2}}x}+\dfrac{{{\operatorname{Cos}}^{4}}x}{{{\operatorname{Sin}}^{2}}x} and then integrate them separately. Consider the first term, write Sin2x{{\operatorname{Sin}}^{2}}x as 1Cos2x1-{{\operatorname{Cos}}^{2}}x so that it becomes (SecxCosx)2{{\left( \operatorname{Sec}x-\operatorname{Cos}x \right)}^{2}} , expand this and you will get simplified terms which have direct integral formula . Similarly, we can evaluate the integral of the second term.