Solveeit Logo

Question

Question: Evaluate the following integral: \[\int {2x{{\sec }^3}({x^2} + 3)\tan ({x^2} + 3)dx} \]?...

Evaluate the following integral: 2xsec3(x2+3)tan(x2+3)dx\int {2x{{\sec }^3}({x^2} + 3)\tan ({x^2} + 3)dx} ?

Explanation

Solution

We can try to solve this question by using the substitution method. We can assign a variable, a part of the question, and then start differentiating it. This makes the question complex-free and it is easy to solve afterwards. Then we can try to put that differentiated part in the question back again and integrate it.

Complete step-by-step solution:
The integral is:
2xsec3(x2+3)tan(x2+3)dx\int {2x{{\sec }^3}({x^2} + 3)\tan ({x^2} + 3)dx}
We are going to integrate this integral with respect to xx.
First, we will try to expand sec3{\sec ^3} and tan\tan will remain the same. We can expand it in sec2andsec{\sec ^2}\,\,and\,\,\sec and then, we will get:
=2xsec2(x2+3)sec(x2+3)tan(x2+3)dx= \int {2x{{\sec }^2}({x^2} + 3)\sec ({x^2} + 3)\tan ({x^2} + 3)dx}
Now, we will assign a variable to sec(x2+3)\sec ({x^2} + 3). So, let t=sec(x2+3)t = \sec ({x^2} + 3). Now, we will differentiate tt, and we will get:
ddxt=ddxsec(x2+3)\Rightarrow \dfrac{d}{{dx}}t = \dfrac{d}{{dx}}\sec ({x^2} + 3)
We know that the derivation of secx\sec xis secxtanx\sec x\tan x:
ddx(secx)=secxtanx\Rightarrow \dfrac{d}{{dx}}(\sec x) = \sec x\tan x
If the derivation of secx\sec xis secxtanx\sec x\tan x, then the derivation of sec(x2+3)\sec ({x^2} + 3)is:
ddxsec(x2+3)=sec(x2+3)tan(x2+3)ddx(x2+3)\Rightarrow \dfrac{d}{{dx}}\sec ({x^2} + 3) = \sec ({x^2} + 3)\tan ({x^2} + 3) \cdot \dfrac{d}{{dx}}({x^2} + 3)
We know from the basic rule of differentiation that:
ddxxn=nxn1\Rightarrow \dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}
We will apply this rule to differentiate ddx(x2+3)\dfrac{d}{{dx}}({x^2} + 3), and we get:
ddx(x2+3)=ddx(x2)+ddx(3)\Rightarrow \dfrac{d}{{dx}}({x^2} + 3) = \dfrac{d}{{dx}}({x^2}) + \dfrac{d}{{dx}}(3)
ddx(x2+3)=2x\Rightarrow \dfrac{d}{{dx}}({x^2} + 3) = 2x
When we put the value of ddx(x2+3)\dfrac{d}{{dx}}({x^2} + 3)in the equation ddxsec(x2+3)=sec(x2+3)tan(x2+3)ddx(x2+3)\dfrac{d}{{dx}}\sec ({x^2} + 3) = \sec ({x^2} + 3)\tan ({x^2} + 3) \cdot \dfrac{d}{{dx}}({x^2} + 3), then we get:
ddxsec(x2+3)=sec(x2+3)tan(x2+3)2x\Rightarrow \dfrac{d}{{dx}}\sec ({x^2} + 3) = \sec ({x^2} + 3)\tan ({x^2} + 3) \cdot 2x
So, differentiation of t=sec(x2+3)t = \sec ({x^2} + 3)is:
dtdx=sec(x2+3)tan(x2+3)2x\Rightarrow \dfrac{{dt}}{{dx}} = \sec ({x^2} + 3)\tan ({x^2} + 3) \cdot 2x
Now, we will shift the dxdxto the other side of the equation. This is done so that we can integrate the equation. After shifting dxdx, we get:
dt=[sec(x2+3)tan(x2+3)2x]dx\Rightarrow dt = \left[ {\sec ({x^2} + 3)\tan ({x^2} + 3) \cdot 2x} \right]dx
When we rearrange the equation, we get:
dt=[2xsec(x2+3)tan(x2+3)]dx\Rightarrow dt = \left[ {2x\sec ({x^2} + 3)\tan ({x^2} + 3)} \right]dx
Now, when we replace the value of dtdt in our question, we get:
sec2(x2+3)dt\Rightarrow \int {{{\sec }^2}({x^2} + 3)dt}
We have assigned earlier that t=sec(x2+3)t = \sec ({x^2} + 3). Now, if we replace the value of ttin the question, then we get:
t2dt\Rightarrow \int {{t^2}dt}
This has made our integration process a lot easier. Now, we will apply the basic rule of integration that is:
xndx=xn+1n+1\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}}
When we solve t2dt\int {{t^2}dt} according to the formula, then we get:
t2dt=t2+12+1\Rightarrow \int {{t^2}dt} = \dfrac{{{t^{2 + 1}}}}{{2 + 1}}
t2dt=t33+C\Rightarrow \int {{t^2}dt} = \dfrac{{{t^3}}}{3} + C
Therefore, we got t33+C\dfrac{{{t^3}}}{3} + C
Now, we will simply put the value of t=sec(x2+3)t = \sec ({x^2} + 3)in the equation, and we will get our answer as:
=sec3(x2+3)3+C= \dfrac{{{{\sec }^3}({x^2} + 3)}}{3} + C

Therefore, 2xsec3(x2+3)tan(x2+3)dx=sec3(x2+3)3+C\int {2x{{\sec }^3}({x^2} + 3)\tan ({x^2} + 3)dx} = \dfrac{{{{\sec }^3}({x^2} + 3)}}{3} + C

Note: In this type of question, we should always use the substitution method. By substituting, it becomes a lot easier to differentiate and integrate in the later part of the solution. But, if the expression is big, then it is more confusing, so we have to substitute it correctly.