Solveeit Logo

Question

Question: Evaluate the following integral: \[\int_0^\pi {\dfrac{{xdx}}{{1 + \cos \alpha \sin x}}} \] where \[0...

Evaluate the following integral: 0πxdx1+cosαsinx\int_0^\pi {\dfrac{{xdx}}{{1 + \cos \alpha \sin x}}} where 0<α<π0 < \alpha < \pi .

Explanation

Solution

Hint: Use the properties of definite integrals, that is, 0af(x)dx=0af(ax)dx\int_0^a {f(x)dx = \int_0^a {f(a - x)dx} } and simplify the expression to obtain the desired result.

Complete step-by-step answer:

Let us assign the integral to a variable I.
I=0πxdx1+cosαsinx..........(1)I = \int_0^\pi {\dfrac{{xdx}}{{1 + \cos \alpha \sin x}}} ..........(1)
We know the formula for definite integral as follows:
0af(x)dx=0af(ax)dx.........(2)\int_0^a {f(x)dx = \int_0^a {f(a - x)dx} } .........(2)
Here, f(x)=x1+cosαsinxf(x) = \dfrac{x}{{1 + \cos \alpha \sin x}} and a = π\pi .
Hence, using formula in equation (2) to simplify equation (1), we get:
I=0π(πx)dx1+cosαsin(πx)I = \int_0^\pi {\dfrac{{(\pi - x)dx}}{{1 + \cos \alpha \sin (\pi - x)}}}
We know that sin(πx)=sinx\sin (\pi - x) = \sin x, sine is positive in the second quadrant. Hence, we get:
I=0π(πx)dx1+cosαsinxI = \int_0^\pi {\dfrac{{(\pi - x)dx}}{{1 + \cos \alpha \sin x}}}
Expanding the numerator, we have:
I=π0πdx1+cosαsinx0πxdx1+cosαsinxI = \pi \int_0^\pi {\dfrac{{dx}}{{1 + \cos \alpha \sin x}}} - \int_0^\pi {\dfrac{{xdx}}{{1 + \cos \alpha \sin x}}}
The second term in the expression is nothing but I itself, hence, using equation(1), we have:
I=π0πdx1+cosαsinxII = \pi \int_0^\pi {\dfrac{{dx}}{{1 + \cos \alpha \sin x}}} - I
Solving for I, we get:
2I=π0πdx1+cosαsinx2I = \pi \int_0^\pi {\dfrac{{dx}}{{1 + \cos \alpha \sin x}}}
I=π20πdx1+cosαsinx.........(3)I = \dfrac{\pi }{2}\int_0^\pi {\dfrac{{dx}}{{1 + \cos \alpha \sin x}}} .........(3)
Let us consider the integral term alone in equation (3).
I=0πdx1+cosαsinx.........(4)I' = \int_0^\pi {\dfrac{{dx}}{{1 + \cos \alpha \sin x}}} .........(4)
Now, we know that, sin2x=2tanx1+tan2x\sin 2x = \dfrac{{2\tan x}}{{1 + {{\tan }^2}x}}, using this formula for sin(x) in equation (4), we get:
I=0π(1+tan2x2)dx1+tan2x2+cosα.2tanx2........(5)I' = \int_0^\pi {\dfrac{{\left( {1 + {{\tan }^2}\dfrac{x}{2}} \right)dx}}{{1 + {{\tan }^2}\dfrac{x}{2} + \cos \alpha .2\tan \dfrac{x}{2}}}} ........(5)
Let us use substitution of variables as follows:
tanx2=θ\tan \dfrac{x}{2} = \theta
sec2x2.12.dx=dθ{\sec ^2}\dfrac{x}{2}.\dfrac{1}{2}.dx = d\theta
(1+tan2x2)dx=2dθ\left( {1 + {{\tan }^2}\dfrac{x}{2}} \right)dx = 2d\theta
The limits also change as follows:
x0θ0x \to 0 \Rightarrow \theta \to 0
xπθx \to \pi \Rightarrow \theta \to \infty
Using all this changes in equation (5), we get:
I=02dθ1+θ2+2θcosαI' = \int_0^\infty {\dfrac{{2d\theta }}{{1 + {\theta ^2} + 2\theta \cos \alpha }}}
Expressing the denominator as sum of squares using completing square method, we get:
I=02dθ(θ+cosα)2+(1cos2α)I' = \int_0^\infty {\dfrac{{2d\theta }}{{{{(\theta + \cos \alpha )}^2} + (1 - {{\cos }^2}\alpha )}}}
We know that 1cos2x=sin2x1 - {\cos ^2}x = {\sin ^2}x, hence we have:
I=20dθ(θ+cosα)2+sin2αI' = 2\int_0^\infty {\dfrac{{d\theta }}{{{{(\theta + \cos \alpha )}^2} + {{\sin }^2}\alpha }}}
We know that dx(x)2+a2=1atan1xa\int {\dfrac{{dx}}{{{{(x)}^2} + {a^2}}} = \dfrac{1}{a}\tan {}^{ - 1}\dfrac{x}{a}} , hence we have:
I=2sinαtan1(θ+cosαsinα)0I' = \left. {\dfrac{2}{{\sin \alpha }}{{\tan }^{ - 1}}\left( {\dfrac{{\theta + \cos \alpha }}{{\sin \alpha }}} \right)} \right|_0^\infty
Evaluating the limits, we have:
I=2sinα(tan1()tan1(cosαsinα))I' = \dfrac{2}{{\sin \alpha }}\left( {{{\tan }^{ - 1}}\left( \infty \right) - {{\tan }^{ - 1}}\left( {\dfrac{{\cos \alpha }}{{\sin \alpha }}} \right)} \right)
We know that, cosαsinα=cotα\dfrac{{\cos \alpha }}{{\sin \alpha }} = \cot \alpha , hence we get:
I=2sinα(tan1()tan1(cotα))I' = \dfrac{2}{{\sin \alpha }}\left( {{{\tan }^{ - 1}}\left( \infty \right) - {{\tan }^{ - 1}}\left( {\cot \alpha } \right)} \right)
We also know that, tan1()=π2{\tan ^{ - 1}}\left( \infty \right) = \dfrac{\pi }{2} and cotα=tan(π2α)\cot \alpha = \tan \left( {\dfrac{\pi }{2} - \alpha } \right), hence we have:
I=2sinα(π2tan1(tan(π2α)))I' = \dfrac{2}{{\sin \alpha }}\left( {\dfrac{\pi }{2} - {{\tan }^{ - 1}}\left( {\tan \left( {\dfrac{\pi }{2} - \alpha } \right)} \right)} \right)
Since, tan1(tan(x))=x{\tan ^{ - 1}}\left( {\tan \left( x \right)} \right) = x, we have:
I=2sinα(π2(π2α))I' = \dfrac{2}{{\sin \alpha }}\left( {\dfrac{\pi }{2} - \left( {\dfrac{\pi }{2} - \alpha } \right)} \right)
Simplifying, we get:
I=2αsinα.........(6)I' = \dfrac{{2\alpha }}{{\sin \alpha }}.........(6)
Using equation (6) in equation (3), we get:
I=π2×2αsinαI = \dfrac{\pi }{2} \times \dfrac{{2\alpha }}{{\sin \alpha }}
I=παsinαI = \dfrac{{\pi \alpha }}{{\sin \alpha }}
Hence, the value of the integral is I=παsinαI = \dfrac{{\pi \alpha }}{{\sin \alpha }}.

Note: You might make mistake in the integration of dx(x)2+a2=1atan1xa\int {\dfrac{{dx}}{{{{(x)}^2} + {a^2}}} = \dfrac{1}{a}\tan {}^{ - 1}\dfrac{x}{a}} formula by missing out the 1a\dfrac{1}{a} term. It is necessary to simplify the integral completely and not leave the answer in terms of tan1(cotα){\tan ^{ - 1}}(\cot \alpha ).