Question
Question: Evaluate the following integral: \[\int_0^\pi {\dfrac{{xdx}}{{1 + \cos \alpha \sin x}}} \] where \[0...
Evaluate the following integral: ∫0π1+cosαsinxxdx where 0<α<π.
Solution
Hint: Use the properties of definite integrals, that is, ∫0af(x)dx=∫0af(a−x)dx and simplify the expression to obtain the desired result.
Complete step-by-step answer:
Let us assign the integral to a variable I.
I=∫0π1+cosαsinxxdx..........(1)
We know the formula for definite integral as follows:
∫0af(x)dx=∫0af(a−x)dx.........(2)
Here, f(x)=1+cosαsinxx and a = π.
Hence, using formula in equation (2) to simplify equation (1), we get:
I=∫0π1+cosαsin(π−x)(π−x)dx
We know that sin(π−x)=sinx, sine is positive in the second quadrant. Hence, we get:
I=∫0π1+cosαsinx(π−x)dx
Expanding the numerator, we have:
I=π∫0π1+cosαsinxdx−∫0π1+cosαsinxxdx
The second term in the expression is nothing but I itself, hence, using equation(1), we have:
I=π∫0π1+cosαsinxdx−I
Solving for I, we get:
2I=π∫0π1+cosαsinxdx
I=2π∫0π1+cosαsinxdx.........(3)
Let us consider the integral term alone in equation (3).
I′=∫0π1+cosαsinxdx.........(4)
Now, we know that, sin2x=1+tan2x2tanx, using this formula for sin(x) in equation (4), we get:
I′=∫0π1+tan22x+cosα.2tan2x(1+tan22x)dx........(5)
Let us use substitution of variables as follows:
tan2x=θ
sec22x.21.dx=dθ
(1+tan22x)dx=2dθ
The limits also change as follows:
x→0⇒θ→0
x→π⇒θ→∞
Using all this changes in equation (5), we get:
I′=∫0∞1+θ2+2θcosα2dθ
Expressing the denominator as sum of squares using completing square method, we get:
I′=∫0∞(θ+cosα)2+(1−cos2α)2dθ
We know that 1−cos2x=sin2x, hence we have:
I′=2∫0∞(θ+cosα)2+sin2αdθ
We know that ∫(x)2+a2dx=a1tan−1ax, hence we have:
I′=sinα2tan−1(sinαθ+cosα)0∞
Evaluating the limits, we have:
I′=sinα2(tan−1(∞)−tan−1(sinαcosα))
We know that, sinαcosα=cotα, hence we get:
I′=sinα2(tan−1(∞)−tan−1(cotα))
We also know that, tan−1(∞)=2π and cotα=tan(2π−α), hence we have:
I′=sinα2(2π−tan−1(tan(2π−α)))
Since, tan−1(tan(x))=x, we have:
I′=sinα2(2π−(2π−α))
Simplifying, we get:
I′=sinα2α.........(6)
Using equation (6) in equation (3), we get:
I=2π×sinα2α
I=sinαπα
Hence, the value of the integral is I=sinαπα.
Note: You might make mistake in the integration of ∫(x)2+a2dx=a1tan−1ax formula by missing out the a1 term. It is necessary to simplify the integral completely and not leave the answer in terms of tan−1(cotα).