Solveeit Logo

Question

Question: Evaluate the following integral, \(I=\int{\dfrac{2\sin \theta +\cos \theta }{7\sin \theta -5\cos \...

Evaluate the following integral,
I=2sinθ+cosθ7sinθ5cosθdθI=\int{\dfrac{2\sin \theta +\cos \theta }{7\sin \theta -5\cos \theta }d\theta }

Explanation

Solution

To solve this integral, we will rewrite the numerator in such a manner that we can simplify the integrand. We will also use the method of substitution for the purpose of simplification. We will need the following integration formulae of standard equations, 1xdx=lnx+c\int{\dfrac{1}{x}dx=\ln x+c} and 1dx=x+c\int{1dx}=x+c where cc is the integration constant. Using these, we will be able to evaluate the given integral.

Complete step-by-step solution:
The given integral is I=2sinθ+cosθ7sinθ5cosθdθI=\int{\dfrac{2\sin \theta +\cos \theta }{7\sin \theta -5\cos \theta }d\theta }. The denominator is 7sinθ5cosθ7\sin \theta -5\cos \theta and the numerator is 2sinθ+cosθ2\sin \theta +\cos \theta . It will become easier to find the value of the integration if we simplify the integrand. Looking at the integrand, we can aim to write the numerator in terms of the denominator. Now, the coefficients of the sine and cosine functions in the numerator is 2 and 1 respectively. The numerator of the integrand can be modified and rewritten in the following manner,
2sinθ+cosθ=14874sinθ+7474cosθ2\sin \theta +\cos \theta =\dfrac{148}{74}\sin \theta +\dfrac{74}{74}\cos \theta
The number 74 is works in this case because 74=49+2574=49+25 which is nothing but 74=72+5274={{7}^{2}}+{{5}^{2}} which are the coefficients of the sine and cosine function in the denominator.
We will split the right hand side of the above equation so that we have the denominator as a part of the numerator expression, as follows,
14874sinθ+7474cosθ=63+8574sinθ+1194574cosθ 14874sinθ+7474cosθ=(6374sinθ4574cosθ)+(8574sinθ+11974cosθ) 14874sinθ+7474cosθ=974(7sinθ5cosθ)+1774(5sinθ+7cosθ) \begin{aligned} & \dfrac{148}{74}\sin \theta +\dfrac{74}{74}\cos \theta =\dfrac{63+85}{74}\sin \theta +\dfrac{119-45}{74}\cos \theta \\\ & \Rightarrow \dfrac{148}{74}\sin \theta +\dfrac{74}{74}\cos \theta =\left( \dfrac{63}{74}\sin \theta -\dfrac{45}{74}\cos \theta \right)+\left( \dfrac{85}{74}\sin \theta +\dfrac{119}{74}\cos \theta \right) \\\ & \therefore \dfrac{148}{74}\sin \theta +\dfrac{74}{74}\cos \theta =\dfrac{9}{74}\left( 7\sin \theta -5\cos \theta \right)+\dfrac{17}{74}\left( 5\sin \theta +7\cos \theta \right) \\\ \end{aligned}
Now, substituting this expression in place of the numerator in the integrand, we get
I=974(7sinθ5cosθ)+1774(5sinθ+7cosθ)7sinθ5cosθdθ =974(7sinθ5cosθ)7sinθ5cosθdθ+1774(5sinθ+7cosθ)7sinθ5cosθdθ\begin{aligned} & I=\int{\dfrac{\dfrac{9}{74}\left( 7\sin \theta -5\cos \theta \right)+\dfrac{17}{74}\left( 5\sin \theta +7\cos \theta \right)}{7\sin \theta -5\cos \theta }}d\theta \\\ & =\dfrac{9}{74}\int{\dfrac{\left( 7\sin \theta -5\cos \theta \right)}{7\sin \theta -5\cos \theta }d\theta +\dfrac{17}{74}\int{\dfrac{\left( 5\sin \theta +7\cos \theta \right)}{7\sin \theta -5\cos \theta }}}d\theta \end{aligned}
Now, let us integrate the first term of II.
974(7sinθ5cosθ)7sinθ5cosθdθ=9741dθ\dfrac{9}{74}\int{\dfrac{\left( 7\sin \theta -5\cos \theta \right)}{7\sin \theta -5\cos \theta }d\theta =\dfrac{9}{74}\int{1d\theta }}
We know that 1dx=x+c\int{1dx}=x+c. Therefore, the first term of II equals to 974θ+c1\dfrac{9}{74}\theta +{{c}_{1}}.
Now, for the second term of II, we will use the method of substitution. Let u=7sinθ5cosθu=7\sin \theta -5\cos \theta . Therefore, on differentiating uu we have the following,
dudθ=7cosθ+5sinθ du=(7cosθ+5sinθ)dθ \begin{aligned} & \dfrac{du}{d\theta }=7\cos \theta +5\sin \theta \\\ & \therefore du=\left( 7\cos \theta +5\sin \theta \right)d\theta \\\ \end{aligned}
Therefore, the second term of II will become 17741udu\dfrac{17}{74}\int{\dfrac{1}{u}du}. Now, we know that 1xdx=lnx+c\int{\dfrac{1}{x}dx=\ln x+c}.
So, the second term of II equals to 1774ln(u)=1774ln(7sinθ5cosθ)+c2\dfrac{17}{74}\ln \left( u \right)=\dfrac{17}{74}\ln \left( 7\sin \theta -5\cos \theta \right)+{{c}_{2}}.
Therefore, we have the following equation,
I=974θ+c1+1774ln(7sinθ5cosθ)+c2 =974θ+1774ln(7sinθ5cosθ)+C\begin{aligned} & I=\dfrac{9}{74}\theta +{{c}_{1}}+\dfrac{17}{74}\ln \left( 7\sin \theta -5\cos \theta \right)+{{c}_{2}} \\\ & =\dfrac{9}{74}\theta +\dfrac{17}{74}\ln \left( 7\sin \theta -5\cos \theta \right)+C \end{aligned}

Note: We were able to rewrite the numerator of the integrand in such a way that the expression in the denominator was a part of the modified numerator. Also, the sine and cosine functions are related to each other in integration and differentiation. Therefore, we can use the substitution method with convenience for evaluating this integral. The calculations and substitutions need to be done carefully so that we can avoid making any minor mistakes.