Solveeit Logo

Question

Question: Evaluate the following integral \(\begin{aligned} & \int{\dfrac{{{x}^{2}}dx}{{{\left( x\sin x+...

Evaluate the following integral
x2dx(xsinx+cosx)2 [a] sinx+cosxxsinx+cosx [b] xsinxcosxxsinx+cosx [c] sinxcosxxsinx+cosx [d] None of these \begin{aligned} & \int{\dfrac{{{x}^{2}}dx}{{{\left( x\sin x+\cos x \right)}^{2}}}} \\\ & [a]\ \dfrac{\sin x+\cos x}{x\sin x+\cos x} \\\ & [b]\ \dfrac{x\sin x-\cos x}{x\sin x+\cos x} \\\ & [c]\ \dfrac{\sin x-\cos x}{x\sin x+\cos x} \\\ & [d]\text{ None of these} \\\ \end{aligned}

Explanation

Solution

Hint: Observe that ddx(xsinx+cosx)=xcosx+sinxsinx=xcosx\dfrac{d}{dx}\left( x\sin x+\cos x \right)=x\cos x+\sin x-\sin x=x\cos x.So we want to convert our integral such that it has xcosxdx in the numerator. Since we know that sin2x+cos2x=1,{{\sin }^{2}}x+{{\cos }^{2}}x=1, we have x2=xsinx(xsinx+cosx)+xcosx(sinx+xcosx){{x}^{2}}=x\sin x\left( x\sin x+\cos x \right)+x\cos x\left( -\sin x+x\cos x \right)
Hence prove that the given integral is equal to xsinx(xsinx+cosx)(xsinx+cosx)2dxxcosx(xcosxsinx)(xsinx+cosx)2dx\int{\dfrac{x\sin x\left( x\sin x+\cos x \right)}{{{\left( x\sin x+\cos x \right)}^{2}}}dx-}\int{\dfrac{x\cos x\left( x\cos x-\sin x \right)}{{{\left( x\sin x+\cos x \right)}^{2}}}dx}. In the second integral use integration by parts taking xcosx(xsinx+cosx)2\dfrac{x\cos x}{{{\left( x\sin x+\cos x \right)}^{2}}} as first function(Observe that this is done since the derivative of xsinx+cosx is equal to the numerator) and (xcosxsinx)\left( x\cos x-\sin x \right) as second function. Observe that the latter integral is produced on integration by parts in the negative of the first integral and hence they cancel each other. Hence find the value of the given integral. Verify your answer.

Complete step by step solution:
Let I=x2dx(xsinx+cosx)2I=\int{\dfrac{{{x}^{2}}dx}{{{\left( x\sin x+\cos x \right)}^{2}}}}
Now, consider the expression E=xsinx(xsinx+cosx)+xcosx(xcosxsinx)E=x\sin x\left( x\sin x+\cos x \right)+x\cos x\left( x\cos x-\sin x \right)
Expanding the terms, we get
E=x2sin2x+xsinxcosx+x2cos2xxsinxcosx=x2(sin2x+cos2x)E={{x}^{2}}{{\sin }^{2}}x+x\sin x\cos x+{{x}^{2}}{{\cos }^{2}}x-x\sin x\cos x={{x}^{2}}\left( {{\sin }^{2}}x+{{\cos }^{2}}x \right)
we know that sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1
Hence, we have
E=x2E={{x}^{2}}
Replacing x2{{x}^{2}} of the integral I by E, we get
I=xsinx(xsinx+cosx)+xcosx(xcosxsinx)(xsinx+cosx)2dxI=\int{\dfrac{x\sin x\left( x\sin x+\cos x \right)+x\cos x\left( x\cos x-\sin x \right)}{{{\left( x\sin x+\cos x \right)}^{2}}}}dx
We know that a+bc=ac+bc\dfrac{a+b}{c}=\dfrac{a}{c}+\dfrac{b}{c}
Hence, we have
I=(xsinx(xsinx+cosx)(xsinx+cosx)2+xcosx(xcosxsinx)(xsinx+cosx)2)dxI=\int{\left( \dfrac{x\sin x\left( x\sin x+\cos x \right)}{{{\left( x\sin x+\cos x \right)}^{2}}}+\dfrac{x\cos x\left( x\cos x-\sin x \right)}{{{\left( x\sin x+\cos x \right)}^{2}}} \right)dx}
Simplifying, we get
I=(xsinxxsinx+cosx+xcosx(xcosxsinx)(xsinx+cosx)2)dxI=\int{\left( \dfrac{x\sin x}{x\sin x+\cos x}+\dfrac{x\cos x\left( x\cos x-\sin x \right)}{{{\left( x\sin x+\cos x \right)}^{2}}} \right)dx}
Using linearity of integration, i.e. (f+g)dx=fdx+gdx\int{\left( f+g \right)dx=\int{fdx}+\int{gdx}}, we get
I=xsinx(xsinx+cosx)dx(xsinx+cosx)2+xcosx(xcosxsinx)(xsinx+cosx)2dx =xsinxxsinx+cosxdx+xcosx(xcosxsinx)(xsinx+cosx)2dx \begin{aligned} & I=\int{\dfrac{x\sin x\left( x\sin x+\cos x \right)dx}{{{\left( x\sin x+\cos x \right)}^{2}}}}+\int{\dfrac{x\cos x\left( x\cos x-\sin x \right)}{{{\left( x\sin x+\cos x \right)}^{2}}}dx} \\\ & =\int{\dfrac{x\sin x}{x\sin x+\cos x}dx+\int{\dfrac{x\cos x\left( x\cos x-\sin x \right)}{{{\left( x\sin x+\cos x \right)}^{2}}}dx}} \\\ \end{aligned}
We know that if ddxg(x)=v(x)\dfrac{d}{dx}g\left( x \right)=v\left( x \right) and f(x)dx=u(x)\int{f\left( x \right)}dx=u\left( x \right), then f(x)g(x)dx=g(x)u(x)v(x)u(x)dx\int{f\left( x \right)g\left( x \right)dx}=g\left( x \right)u\left( x \right)-\int{v\left( x \right)u\left( x \right)dx}. This is known as integration by parts rule. f(x) is known as the second function, and g(x) is known as the first function.
Taking f(x)=xcosx(xsinx+cosx)2f\left( x \right)=\dfrac{x\cos x}{{{\left( x\sin x+\cos x \right)}^{2}}} and g(x)=(xcosxsinx)g\left( x \right)=\left( x\cos x-\sin x \right), we have
u(x)=xcosx(xsinx+cosx)2dxu\left( x \right)=\int{\dfrac{x\cos x}{{{\left( x\sin x+\cos x \right)}^{2}}}dx}
In the expression for u(x), put xsinx+cosx = t
Differentiating both sides, we get
dt = (xcosx+sinx-sinx)dx = xcosxdx
Hence, we have
u(x)=dtt2u\left( x \right)=\int{\dfrac{dt}{{{t}^{2}}}}
We know that
xndx=xn+1n+1+C,n1\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}+C,n\ne -1
Hence, we have
u(x)=t2+12+1=1tu\left( x \right)=\dfrac{{{t}^{-2+1}}}{-2+1}=\dfrac{-1}{t}
Reverting to original variable, we get
u(x)=1xsinx+cosxu\left( x \right)=-\dfrac{1}{x\sin x+\cos x}
Also, we have
v(x)=ddx(xcosxsinx)=xsinx+cosxcosx=xsinxv\left( x \right)=\dfrac{d}{dx}\left( x\cos x-\sin x \right)=-x\sin x+\cos x-\cos x=-x\sin x
Hence, by integration by parts rule, we have
I=xsinx(xcosx+sinx)2dx+u(x)g(x)v(x)u(x)dx =xsinxdx(xcosx+sinx)2+(xcosxsinx)(1xsinx+cosx)xsinx(xcosx+sinx)dx \begin{aligned} & I=\int{\dfrac{x\sin x}{{{\left( x\cos x+\sin x \right)}^{2}}}dx+u\left( x \right)g\left( x \right)-\int{v\left( x \right)u\left( x \right)dx}} \\\ & =\int{\dfrac{x\sin xdx}{{{\left( x\cos x+\sin x \right)}^{2}}}+\left( x\cos x-\sin x \right)\left( \dfrac{-1}{x\sin x+\cos x} \right)-\int{\dfrac{-x\sin x}{-\left( x\cos x+\sin x \right)}dx}} \\\ \end{aligned}
Simplifying, we get
I=xsinxdx(xcosx+sinx)2xcosxsinxxsinx+cosxxsinxdx(xcosx+sinx)2I=\int{\dfrac{x\sin xdx}{{{\left( x\cos x+\sin x \right)}^{2}}}-\dfrac{x\cos x-\sin x}{x\sin x+\cos x}-\int{\dfrac{x\sin xdx}{{{\left( x\cos x+\sin x \right)}^{2}}}}}
The first and the last integrals are the same and hence cancel each other. Hence, we have
I=xcosxsinxxsinx+cosx+CI=-\dfrac{x\cos x-\sin x}{x\sin x+\cos x}+C, where C is the constant of integration.
Hence option [d] is correct as none of the options [a], [b] and [c] are correct.
Note: Verification:
We have
dIdx=ddx(xcosxsinxxsinx+cosx)\dfrac{dI}{dx}=-\dfrac{d}{dx}\left( \dfrac{x\cos x-\sin x}{x\sin x+\cos x} \right)
Using the fact that ddx(uv)=vdudxudvdxv2\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}
Hene, we get
dIdx=1(xsinx+cosx)2((xsinx+cosx)(xsinx)(xcosxsinx)(xcosx))\dfrac{dI}{dx}=-\dfrac{1}{{{\left( x\sin x+\cos x \right)}^{2}}}\left( \left( x\sin x+\cos x \right)\left( -x\sin x \right)-\left( x\cos x-\sin x \right)\left( x\cos x \right) \right)
Simplifying, we get
dIdx=1(xsinx+cosx)2(x2sin2xxsinxcosxx2cos2x+xcosxsinx)\dfrac{dI}{dx}=\dfrac{-1}{{{\left( x\sin x+\cos x \right)}^{2}}}\left( -{{x}^{2}}{{\sin }^{2}}x-x\sin x\cos x-{{x}^{2}}{{\cos }^{2}}x+x\cos x\sin x \right)
Hence, we have
dIdx=x2(sin2x+cos2x)(xsinx+cosx)2=x2(xsinx+cosx)2\dfrac{dI}{dx}=\dfrac{{{x}^{2}}\left( {{\sin }^{2}}x+{{\cos }^{2}}x \right)}{{{\left( x\sin x+\cos x \right)}^{2}}}=\dfrac{{{x}^{2}}}{{{\left( x\sin x+\cos x \right)}^{2}}}
Hence, our answer is verified to be correct.