Solveeit Logo

Question

Question: Evaluate the following integral as limit of sum: \(\int\limits_{0}^{2}{{{e}^{x}}dx}\)...

Evaluate the following integral as limit of sum:
02exdx\int\limits_{0}^{2}{{{e}^{x}}dx}

Explanation

Solution

Hint: Apply the formula,
abf(x)dx=(ba)limn1n[f(a)+f(a+h)+......+f(a+(n1)h)]\int\limits_{a}^{b}{f\left( x \right)dx=\left( b-a \right)\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\left[ f\left( a \right)+f\left( a+h \right)+......+f\left( a+\left( n-1 \right)h \right) \right]}, where h=ban.h=\dfrac{b-a}{n}.

The given integral is
02exdx\int\limits_{0}^{2}{{{e}^{x}}dx}
By definition integral as limit of sum can be written as,
abf(x)dx=(ba)limn1n[f(a)+f(a+h)+....+f(a+(n1)h)]\int\limits_{a}^{b}{f\left( x \right)dx=\left( b-a \right)\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\left[ f\left( a \right)+f\left( a+h \right)+....+f\left( a+\left( n-1 \right)h \right) \right]}, where h=banh=\dfrac{b-a}{n}
So, when we are converting an integral to a limit of sum we use the above formula.
Here f(x)f\left( x \right) is the function to be integrated with aa as lower limit and bb as upper limit.
The right hand side is the conversion to limit.
In this question our function is ex'{{e}^{x}}' with 00 as lower limit and 22 is upper limit.
So, we get
02exdx=(20)limn1n[e0+e(o+h)+....+e(o+(n1)h)].......(i)\int\limits_{0}^{2}{{{e}^{x}}dx=\left( 2-0 \right)\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\left[ {{e}^{0}}+{{e}^{\left( o+h \right)}}+....+{{e}^{\left( o+\left( n-1 \right)h \right)}} \right]}.......\left( i \right)
Now here we will find the value of ‘hh ‘.
h=banh=\dfrac{b-a}{n}
Substituting the values of upper and lower limit, we get
h=20n=2n..........(ii)h=\dfrac{2-0}{n}=\dfrac{2}{n}..........\left( ii \right)
Now substituting the value of the equation(ii)\left( ii \right) in equation (i)\left( i \right) , we get
02exdx=2limn1n[e0+e(o+2n)+....+e(o+(n1)2n)]\int\limits_{0}^{2}{{{e}^{x}}dx=2\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\left[ {{e}^{0}}+{{e}^{\left( o+\dfrac{2}{n} \right)}}+....+{{e}^{\left( o+\left( n-1 \right)\dfrac{2}{n} \right)}} \right]}
We know e0=1{{e}^{0}}=1 , so the above equation becomes,
02exdx=2limn1n[1+e(2n)+....+e2n(n1)]...........(iii)\int\limits_{0}^{2}{{{e}^{x}}dx=2\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\left[ 1+{{e}^{\left( \dfrac{2}{n} \right)}}+....+{{e}^{\dfrac{2}{n}\left( n-1 \right)}} \right]}...........\left( iii \right)
Now consider the series,
1+e(2n)+.....+e2n(n1).........(iv)1+{{e}^{\left( \dfrac{2}{n} \right)}}+.....+{{e}^{\dfrac{2}{n}\left( n-1 \right)}}.........\left( iv \right)
This is an geometric progression (GP) series with first term as e(2n){{e}^{\left( \dfrac{2}{n} \right)}} , common ratio as ‘e2n{{e}^{\dfrac{2}{n}}}
Here we can also observe that there are ‘nn’ terms in the series.
Now the sum of first nn terms of a GPGP is
sn=a(rn1)r1,r>1{{s}_{n}}=\dfrac{a\left( {{r}^{n}}-1 \right)}{r-1},r>1
Where ‘aa‘ is the first term, ‘nn ‘ is the number of terms and ‘rr ‘ is the common ratio.
Applying this formula in equation (iv)\left( iv \right) series, we get
sn=1(e(2n)n1)(e2n1){{s}_{n}}=\dfrac{1\left( {{e}^{{{\left( \dfrac{2}{n} \right)}^{n}}-1}} \right)}{\left( {{e}^{\dfrac{2}{n}}}-1 \right)}
sn=(e21e2n1){{s}_{n}}=\left( \dfrac{{{e}^{2}}-1}{{{e}^{\dfrac{2}{n}}}-1} \right)
Substituting this value in equation (iii)\left( iii \right) we get
02exdx=2limn1n(e21e2n1)\int\limits_{0}^{2}{{{e}^{x}}}dx=2\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\left( \dfrac{{{e}^{2}}-1}{{{e}^{\dfrac{2}{n}}}-1} \right)
Taking out the constant term, we get
02exdx=2(e21)limn(1e2n11n)\int\limits_{0}^{2}{{{e}^{x}}}dx=2({{e}^{2}}-1)\underset{n\to \infty }{\mathop{\lim }}\,\left( \dfrac{1}{\dfrac{{{e}^{\dfrac{2}{n}}}-1}{\dfrac{1}{n}}} \right)
Now we will multiply and divide by 2'2' in denominator, we get
02exdx=2(e21)limn(12[e2n12n]).........(iv)\int\limits_{0}^{2}{{{e}^{x}}}dx=2({{e}^{2}}-1)\underset{n\to \infty }{\mathop{\lim }}\,\left( \dfrac{1}{2\left[ \dfrac{{{e}^{\dfrac{2}{n}}}-1}{\dfrac{2}{n}} \right]} \right).........(iv)
We know the formula,
limt0et1t=1\underset{t\to 0}{\mathop{\lim }}\,\dfrac{{{e}^{t}}-1}{t}=1
We know, as nn\to \infty then 2n0\dfrac{2}{n}\to 0 .
So, the denominator can be written as,
lim2n0e2n12n=1\underset{\dfrac{2}{n}\to 0}{\mathop{\lim }}\,\dfrac{{{e}^{\dfrac{2}{n}}}-1}{\dfrac{2}{n}}=1
Substituting this value in the equation (iv), we get
02exdx=2(e21)limn(12(1))\int\limits_{0}^{2}{{{e}^{x}}}dx=2({{e}^{2}}-1)\underset{n\to \infty }{\mathop{\lim }}\,\left( \dfrac{1}{2(1)} \right)
As this is free from n'n' term so the value remain same even after applying the limit, so the above equation can be written as,
02exdx=2(e21)(12)=(e21)\int\limits_{0}^{2}{{{e}^{x}}}dx=2({{e}^{2}}-1)\left( \dfrac{1}{2} \right)=({{e}^{2}}-1)

Hence this is the required integral value.

Note: Student might get confused looking at the series 1+e(2n)+.....+e2n(n1)1+{{e}^{\left( \dfrac{2}{n} \right)}}+.....+{{e}^{\dfrac{2}{n}\left( n-1 \right)}}.
They might take this as an arithmetic progression series. If we apply the AP series formula, we will get the wrong answer.