Solveeit Logo

Question

Question: Evaluate the following: \(\int\limits_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}}{\dfrac{dx}{1+\sqrt{\cot x}...

Evaluate the following: π6π3dx1+cotx\int\limits_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}}{\dfrac{dx}{1+\sqrt{\cot x}}}.

Explanation

Solution

In order to solve this question, let suppose that I=π6π3dx1+cotxI=\int\limits_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}}{\dfrac{dx}{1+\sqrt{\cot x}}}and then substitute cotx=cosxsinx\cot x=\dfrac{\cos x}{\sin x} in the expression. After expressing II in terms of cosx\cos x and sinx\sin x, by the property of definite integral abf(x)dx=abf(b+ax)dx\int\limits_{a}^{b}{f(x)dx=\int\limits_{a}^{b}{f(b+a-x)dx}}, substitute (π3+π6x)\left( \dfrac{\pi }{3}+\dfrac{\pi }{6}-x \right) in place of xx in II and simplify the expression. And then add the two expressions of II, and get the final expression. Finally integrate the resultant expression and evaluate the answer.

Complete step by step answer:
It is given to evaluate the definite integral π6π3dx1+cotx\int\limits_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}}{\dfrac{dx}{1+\sqrt{\cot x}}}.
Now, let us suppose that I=π6π3dx1+cotxI=\int\limits_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}}{\dfrac{dx}{1+\sqrt{\cot x}}}
Now as we know that cotx=cosxsinx\cot x=\dfrac{\cos x}{\sin x}, substituting the value of cotx\cot x in terms of cosx\cos x and sinx\sin x in the above expression, we get
I=π6π3dx1+cosxsinx\Rightarrow I=\int\limits_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}}{\dfrac{dx}{1+\sqrt{\dfrac{\cos x}{\sin x}}}}
After further simplification of the above expression, we get
I=π6π3sinxsinx+cosxdx......................(1)\Rightarrow I=\int\limits_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}}{\dfrac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}}}dx......................(1)
Now we know the property of the definite integral that abf(x)dx=abf(b+ax)dx\int\limits_{a}^{b}{f(x)dx=\int\limits_{a}^{b}{f(b+a-x)dx}}, so extending that property in the above integral, we are substituting (π3+π6x)\left( \dfrac{\pi }{3}+\dfrac{\pi }{6}-x \right) i.e. (π2x)\left( \dfrac{\pi }{2}-x \right) in place of xx
I=π6π3sin(π2x)sin(π2x)+cos(π2x)dx\Rightarrow I=\int\limits_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}}{\dfrac{\sqrt{\sin \left( \dfrac{\pi }{2}-x \right)}}{\sqrt{\sin \left( \dfrac{\pi }{2}-x \right)}+\sqrt{\cos \left( \dfrac{\pi }{2}-x \right)}}}dx
Simplifying the above integral further, we get
I=π6π3cosxsinx+cosxdx......................(2)\Rightarrow I=\int\limits_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}}{\dfrac{\sqrt{\cos x}}{\sqrt{\sin x}+\sqrt{\cos x}}}dx......................(2)
Adding equation (1) and equation (2), we get
2I=π6π3sinx+cosxsinx+cosxdx\Rightarrow 2I=\int\limits_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}}{\dfrac{\sqrt{\sin x}+\sqrt{\cos x}}{\sqrt{\sin x}+\sqrt{\cos x}}}dx
As the numerator and denominator are equal so it will be equal to 1, so
2I=π6π3dx\Rightarrow 2I=\int\limits_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}}{{}}dx
We know that integral of 1 is xx i.e. dx=x\int{dx=x}, so applying this in the above expression, we get
2I=[x]π6π3=[π3π6]=π6\Rightarrow 2I=\left[ x \right]_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}}=\left[ \dfrac{\pi }{3}-\dfrac{\pi }{6} \right]=\dfrac{\pi }{6}
Dividing both sides by 2, we get
I=π12\Rightarrow I=\dfrac{\pi }{12}

Here, I=π6π3dx1+cotx=π12I=\int\limits_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}}{\dfrac{dx}{1+\sqrt{\cot x}}}=\dfrac{\pi }{12}
Hence, from the above relation we can say that π6π3dx1+cotx=π12\int\limits_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}}{\dfrac{dx}{1+\sqrt{\cot x}}}=\dfrac{\pi }{12}.
So, the answer of the above integral given in question is π12\dfrac{\pi }{12}.

Note:
This is an interesting question of definite integral where the tricky part is to apply which property of definite integral. In this question, there are two things to note, the first one is the sum of upper limit and lower limit which in our case is equal to π2\dfrac{\pi }{2} which is a complementary angle. Another thing to notice in the question is when we substituted cotx=cosxsinx\cot x=\dfrac{\cos x}{\sin x}, we got a complementary pair that is sinx\sin x and cosx\cos x in the denominator. So, students whenever you get these two things in a definite integral question apply abf(x)dx=abf(b+ax)dx\int\limits_{a}^{b}{f(x)dx=\int\limits_{a}^{b}{f(b+a-x)dx}} in the integral. It will simplify your integral and you will be able to evaluate the answer easily.