Solveeit Logo

Question

Question: Evaluate the following \(\int{\dfrac{1}{\sin x\sqrt{\sin x\cos x}}}dx=\) \(\left( a \right) \sqrt...

Evaluate the following 1sinxsinxcosxdx=\int{\dfrac{1}{\sin x\sqrt{\sin x\cos x}}}dx=
(a)tanx+c\left( a \right) \sqrt{\tan x}+c
(b)2tanx+c\left( b \right) -2\sqrt{\tan x}+c
(c)2cotx+c\left( c \right) -2\sqrt{\cot x}+c
(d)2cotx+c\left( d \right) 2\sqrt{\cot x}+c

Explanation

Solution

We will multiply and divide the given function with sinx.\sin x. Then, we will use the trigonometric identity cosecx=1sinx.\text{cosecx}=\dfrac{1}{\sin x}. Also, we will use the trigonometric identity sinxcosx=tanx\dfrac{\sin x}{\cos x}=\tan x and tanx=1cotx.\tan x=\dfrac{1}{\cot x}. And then we will do integration by substitution.

Complete step by step solution:
Let us consider the given function 1sinxsinxcosx.\dfrac{1}{\sin x\sqrt{\sin x\cos x}}. We need to find the integral of the given function.
We need to make some necessary rearrangements for it.
We will multiply and divide the function with sinx.\sin x.
Then, we will get sinxsin2xsinxcosx.\dfrac{\sin x}{{{\sin }^{2}}x\sqrt{\sin x\cos x}}.
We will use the identity ab=ab.\sqrt{ab}=\sqrt{a}\sqrt{b}.
Now, from the above identity, we will get sinxcosx=sinxcosx.\sqrt{\sin x\cos x}=\sqrt{\sin x}\sqrt{\cos x}.
We will get 1sinxsinxcosx=sinxsin2xsinxcosx.\dfrac{1}{\sin x\sqrt{\sin x\cos x}}=\dfrac{\sin x}{{{\sin }^{2}}x\sqrt{\sin x}\sqrt{\cos x}}.
Also, we know that aa=a.\dfrac{a}{\sqrt{a}}=\sqrt{a}. So, we will get sinxsinx=sinx.\dfrac{\sin x}{\sqrt{\sin x}}=\sqrt{\sin x}.
Thus, we will get 1sinxsinxcosx=sinxsin2xcosx.\dfrac{1}{\sin x\sqrt{\sin x\cos x}}=\dfrac{\sqrt{\sin x}}{{{\sin }^{2}}x\sqrt{\cos x}}.
Now, we need to further simplify the above expression using the identity ab=ab.\dfrac{\sqrt{a}}{\sqrt{b}}=\sqrt{\dfrac{a}{b}.}
We will get the expression as 1sinxsinxcosx=1sin2xsinxcosx.\dfrac{1}{\sin x\sqrt{\sin x\cos x}}=\dfrac{1}{{{\sin }^{2}}x}\sqrt{\dfrac{\sin x}{\cos x}}.
We know that sinxcosx=tanx.\dfrac{\sin x}{\cos x}=\tan x.
So, we will get 1sinxsinxcosx=tanxsin2x.\dfrac{1}{\sin x\sqrt{\sin x\cos x}}=\dfrac{\sqrt{\tan x}}{{{\sin }^{2}}x}.
We know the trigonometric identity tanx=1cotx.\tan x=\dfrac{1}{\cot x}. From this, we will get tanx=1cotx.\sqrt{\tan x}=\dfrac{1}{\sqrt{\cot x}}.
Similarly, since sinx=1cosecx,\sin x=\dfrac{1}{\text{cosec}x}, we will get cosec2x=1sin2x.\cos e{{c}^{2}}x=\dfrac{1}{{{\sin }^{2}}x}.
So, we will get the equation as 1sinxsinxcosx=cosecxcotx.\dfrac{1}{\sin x\sqrt{\sin x\cos x}}=\dfrac{\text{cosec}x}{\sqrt{\cot x}}.
Now that we have simplified the given expression, we can find the integral using integration by substitution.
We will get 1sinxsinxcosxdx=cosec2xcotxdx.\int{\dfrac{1}{\sin x\sqrt{\sin x\cos x}}dx=\int{\dfrac{\cos e{{c}^{2}}x}{\sqrt{\cot x}}dx.}}
Let us put cotx=t.\cot x=t. Then, we will get cosec2xdx=dt.-\cos e{{c}^{2}}xdx=dt. So, we will get cosec2xdx=dt.\cos e{{c}^{2}}xdx=-dt.
So, now the integral will become 1sinxsinxcosxdx=dtt.\int{\dfrac{1}{\sin x\sqrt{\sin x\cos x}}dx=\int{\dfrac{-dt}{\sqrt{t}}.}}
We know that 1xdx=2x+C.\int{\dfrac{1}{\sqrt{x}}dx=2\sqrt{x}+C.}
So, we can write this integral as 1sinxsinxcosxdx=2t+c.\int{\dfrac{1}{\sin x\sqrt{\sin x\cos x}}dx=-2\sqrt{t}+c.}
Now, since t=cotx,t=\cot x, when we substitute the value, we will get 1sinxsinxcosxdx=2cotx+c.\int{\dfrac{1}{\sin x\sqrt{\sin x\cos x}}dx=-2\sqrt{\cot x}+c.}
Hence the integral is 1sinxsinxcosxdx=2cotx+c\int{\dfrac{1}{\sin x\sqrt{\sin x\cos x}}dx=-2\sqrt{\cot x}+c}

Note: We should always remember the trigonometric identities. Remember that cosx=1secx.\cos x=\dfrac{1}{\sec x}. Even though we have not used this in the above problem, we may need to use this more often while doing problems using trigonometric functions.