Solveeit Logo

Question

Question: Evaluate the following indefinite integral: \(\int{\dfrac{x{{\sin }^{-1}}x}{\sqrt{1-{{x}^{2}}}}dx}\)...

Evaluate the following indefinite integral: xsin1x1x2dx\int{\dfrac{x{{\sin }^{-1}}x}{\sqrt{1-{{x}^{2}}}}dx}?

Explanation

Solution

We start solving the problem by recalling the uv rule of integration as u(x)v(x)dx=u(x)v(x)dx(d(u(x))dxv(x)dx)dx\int{u\left( x \right)v\left( x \right)dx}=u\left( x \right)\int{v\left( x \right)dx}-\int{\left( \dfrac{d\left( u\left( x \right) \right)}{dx}\int{v\left( x \right)dx} \right)dx} by assuming suitable functions for u(x)u\left( x \right) and v(x)v\left( x \right). We then use d(sin1x)dx=11x2\dfrac{d\left( {{\sin }^{-1}}x \right)}{dx}=\dfrac{1}{\sqrt{1-{{x}^{2}}}} assume x1x2dx=I1\int{\dfrac{x}{\sqrt{1-{{x}^{2}}}}dx}={{I}_{1}}. We then solve I1{{I}_{1}} first by replacing 1x21-{{x}^{2}} with t and dxdx with dtdt and using the fact xndx=xn+1n+1+C\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}+C. We then substitute the value of I1{{I}_{1}} in I and make necessary calculations to find the answer for the given integral.

Complete step by step answer:
According to the problem, we need to solve the given indefinite integral xsin1x1x2dx\int{\dfrac{x{{\sin }^{-1}}x}{\sqrt{1-{{x}^{2}}}}dx}.
Let us assume the given indefinite integral be I=xsin1x1x2dxI=\int{\dfrac{x{{\sin }^{-1}}x}{\sqrt{1-{{x}^{2}}}}dx}.
We know that from uv rule of integration, we have u(x)v(x)dx=u(x)v(x)dx(d(u(x))dxv(x)dx)dx\int{u\left( x \right)v\left( x \right)dx}=u\left( x \right)\int{v\left( x \right)dx}-\int{\left( \dfrac{d\left( u\left( x \right) \right)}{dx}\int{v\left( x \right)dx} \right)dx}. Let us this rule to solve for I.
So, we have u(x)=sin1xu\left( x \right)={{\sin }^{-1}}x and v(x)=x1x2v\left( x \right)=\dfrac{x}{\sqrt{1-{{x}^{2}}}}.
I=sin1xx1x2dx(d(sin1x)dxx1x2dx)dx\Rightarrow I={{\sin }^{-1}}x\int{\dfrac{x}{\sqrt{1-{{x}^{2}}}}dx}-\int{\left( \dfrac{d\left( {{\sin }^{-1}}x \right)}{dx}\int{\dfrac{x}{\sqrt{1-{{x}^{2}}}}dx} \right)}dx.
We know that d(sin1x)dx=11x2\dfrac{d\left( {{\sin }^{-1}}x \right)}{dx}=\dfrac{1}{\sqrt{1-{{x}^{2}}}}.
I=sin1xx1x2dx(11x2x1x2dx)dx\Rightarrow I={{\sin }^{-1}}x\int{\dfrac{x}{\sqrt{1-{{x}^{2}}}}dx}-\int{\left( \dfrac{1}{\sqrt{1-{{x}^{2}}}}\int{\dfrac{x}{\sqrt{1-{{x}^{2}}}}dx} \right)}dx.
Let us assume x1x2dx=I1\int{\dfrac{x}{\sqrt{1-{{x}^{2}}}}dx}={{I}_{1}}. So, we get I=sin1xI1(11x2I1)dxI={{\sin }^{-1}}x{{I}_{1}}-\int{\left( \dfrac{1}{\sqrt{1-{{x}^{2}}}}{{I}_{1}} \right)}dx ---(1).
I1=x1x2dx\Rightarrow {{I}_{1}}=\int{\dfrac{x}{\sqrt{1-{{x}^{2}}}}dx} ---(2).
Let us assume 1x2=t1-{{x}^{2}}=t ---(3). Now, apply differential on both sides.
d(1x2)=d(t)\Rightarrow d\left( 1-{{x}^{2}} \right)=d\left( t \right).
We know that d(a+b)=d(a)+d(b)d\left( a+b \right)=d\left( a \right)+d\left( b \right).
d(1)d(x2)=dt\Rightarrow d\left( 1 \right)-d\left( {{x}^{2}} \right)=dt.
We know that for a constant c d(c)=0d\left( c \right)=0 and d(xn)=nxn1dxd\left( {{x}^{n}} \right)=n{{x}^{n-1}}dx.
02xdx=dt\Rightarrow 0-2xdx=dt.
2xdx=dt\Rightarrow -2xdx=dt.
xdx=dt2\Rightarrow xdx=\dfrac{-dt}{2} ---(4).
Let us substitute equation (3) and (4) in equation (2).
So, we get I1=1tdt2{{I}_{1}}=\int{\dfrac{-1}{\sqrt{t}}\dfrac{dt}{2}}.
I1=12t12dt\Rightarrow {{I}_{1}}=\dfrac{-1}{2}\int{{{t}^{\dfrac{-1}{2}}}dt}.
We know that xndx=xn+1n+1+C\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}+C, where C is constant of integration.
I1=12(t12+112+1)+C\Rightarrow {{I}_{1}}=\dfrac{-1}{2}\left( \dfrac{{{t}^{\dfrac{-1}{2}+1}}}{\dfrac{-1}{2}+1} \right)+C.
I1=12(t1212)+C\Rightarrow {{I}_{1}}=\dfrac{-1}{2}\left( \dfrac{{{t}^{\dfrac{1}{2}}}}{\dfrac{1}{2}} \right)+C.
I1=t12+C\Rightarrow {{I}_{1}}=-{{t}^{\dfrac{1}{2}}}+C.
From equation (3), we have 1x2=t1-{{x}^{2}}=t. So, we have I1=1x2+C{{I}_{1}}=-\sqrt{1-{{x}^{2}}}+C and let us substitute this in equation (1).
I=sin1x(1x2)(11x2(1x2))dx\Rightarrow I={{\sin }^{-1}}x\left( -\sqrt{1-{{x}^{2}}} \right)-\int{\left( \dfrac{1}{\sqrt{1-{{x}^{2}}}}\left( -\sqrt{1-{{x}^{2}}} \right) \right)}dx, here we neglected constant of integration as we accommodate in final constant of integration.
I=1x2sin1x(1)dx\Rightarrow I=-\sqrt{1-{{x}^{2}}}{{\sin }^{-1}}x-\int{\left( -1 \right)}dx.
I=1x2sin1x+dx\Rightarrow I=-\sqrt{1-{{x}^{2}}}{{\sin }^{-1}}x+\int{dx}.
We know that adx=ax+C\int{adx}=ax+C.
I=1x2sin1x+x+C\Rightarrow I=-\sqrt{1-{{x}^{2}}}{{\sin }^{-1}}x+x+C.
So, we have found the result of integration as xsin1x1x2dx=1x2sin1x+x+C\int{\dfrac{x{{\sin }^{-1}}x}{\sqrt{1-{{x}^{2}}}}dx}=-\sqrt{1-{{x}^{2}}}{{\sin }^{-1}}x+x+C.

xsin1x1x2dx=1x2sin1x+x+C\int{\dfrac{x{{\sin }^{-1}}x}{\sqrt{1-{{x}^{2}}}}dx}=-\sqrt{1-{{x}^{2}}}{{\sin }^{-1}}x+x+C.

Note: Whenever we get problems involving integration of logarithmic and inverse trigonometric functions, we make use of the uv rule of integration to reduce the calculation time. We should perform every step carefully in order to avoid calculation mistakes in the problem. We should not forget to add constant integration while solving problems which involve indefinite integrals as it is the most common mistake done by students.