Question
Question: Evaluate the following indefinite integral \[\int{\dfrac{{{x}^{2}}\left( 1-\ln x \right)}{{{\ln }^{4...
Evaluate the following indefinite integral ∫ln4x−x4x2(1−lnx)dx
(a) 21ln(lnxx)−41ln(ln2x−x2)+C,
(b) 41ln(ln(x)+xln(x)−x)−21tan−1(xlnx)+C,
(c) 41ln(ln(x)−xln(x)+x)−21tan−1(xlnx)+C,
(d) 41(ln(ln(x)+xln(x)−x)+tan−1(xlnx))+C.
Solution
We start solving the problem by assigning a variable to the given integral. We then make the necessary arrangements required in integrand to divide it into the sum of two integrals. We then calculate each integral separately by assuming xlnx=t in each integral. We then use the integration formulas ∫x2−a2dx=2a1ln(x+ax−a)+C and ∫x2+a2dx=a1tan−1(ax)+C to find the integrals in terms of ‘t’. We then substitute xlnx in place of t to get the required result.
Complete step-by-step answer :
According to the problem, we need to solve the indefinite integral ∫ln4x−x4x2(1−lnx)dx. Let us assume the integral be I.
So, we have I=∫ln4x−x4x2(1−lnx)dx ----(1).
Let us multiply and divide integrand with 2.
⇒I=∫2(ln4x−x4)2x2(1−lnx)dx.
⇒I=21∫(ln2x−x2)(ln2x+x2)2x2(1−lnx)dx.
⇒I=21∫(ln2x−x2)(ln2x+x2)(2x2+ln2x−ln2x)(1−lnx)dx.
⇒I=21∫(ln2x−x2)(ln2x+x2)(ln2x+x2−ln2x+x2)(1−lnx)dx.
⇒I=21∫(ln2x−x2)(ln2x+x2)((ln2x+x2)−(ln2x−x2))(1−lnx)dx.
⇒I=21∫((ln2x−x2)(ln2x+x2)(ln2x+x2)(1−lnx))−((ln2x−x2)(ln2x+x2)(ln2x−x2)(1−lnx))dx.
⇒I=21∫((ln2x−x2)(1−lnx))−((ln2x+x2)(1−lnx))dx ----(2).
We know that ∫f(x)+g(x)dx=∫f(x)dx+∫g(x)dx. We use this result in equation (2).
⇒I=21(∫(ln2x−x2)(1−lnx)dx)−21(∫(ln2x+x2)(1−lnx)dx).
Let us assume ∫(ln2x−x2)(1−lnx)dx as I1 and ∫(ln2x+x2)(1−lnx)dx as I2.
So, we get I=21I1−21I2 ---(3).
Let us solve I1 and I2 separately and then substitute in equation (3).
Let us solve I1 first. So, we have I1=∫(ln2x−x2)(1−lnx)dx.
Let us take x2 common in denominator of the integrand.
⇒I1=∫x2(x2ln2x−1)(1−lnx)dx.
⇒I1=∫x2((xlnx)2−1)(1−lnx)dx ---(4).
Let us assume xlnx=t ---(5). We differentiate in both sides.
⇒d(xlnx)=dt.
We know that d(vu)=v2vdu−udv.
⇒x2(x)d(lnx)−(lnx)d(x)=dt.
We know that d(lnx)=x1dx.
⇒x2(x)(x1)dx−(lnx)dx=dt.
⇒x2(1)dx−(lnx)dx=dt.
⇒x2(1−lnx)dx=dt ---(6).
Let us substitute equations (5) and (6) in equation (4).
⇒I1=∫t2−1dt.
⇒I1=∫t2−12dt.
We know that ∫x2−a2dx=2a1ln(x+ax−a)+C.
⇒I1=2(1)1ln(t+1t−1)+C1.
⇒I1=21ln(t+1t−1)+C1.
From equation (5), we have t=xlnx.
⇒I1=21ln(xlnx)+1(xlnx)−1+C1.
⇒I1=21ln(xlnx+x)(xlnx−x)+C1.
⇒I1=21ln(lnx+xlnx−x)+C1 ---(7).
Now, let us solve I2 first. So, we have I2=∫(ln2x+x2)(1−lnx)dx.
Let us take x2 common in denominator of the integrand.
⇒I2=∫x2(x2ln2x+1)(1−lnx)dx.
⇒I2=∫x2((xlnx)2+1)(1−lnx)dx---(8).
Let us assume xlnx=t ---(9). We differentiate in both sides.
⇒d(xlnx)=dt.
We know that d(vu)=v2vdu−udv.
⇒x2(x)d(lnx)−(lnx)d(x)=dt.
We know that d(lnx)=x1dx.
⇒x2(x)(x1)dx−(lnx)dx=dt.
⇒x2(1)dx−(lnx)dx=dt.
⇒x2(1−lnx)dx=dt ---(10).
Let us substitute equations (9) and (10) in equation (8).
⇒I2=∫t2+1dt.
⇒I2=∫t2+12dt.
We know that ∫x2+a2dx=a1tan−1(ax)+C.
⇒I2=11tan−1(1t)+C2.
⇒I2=tan−1(t)+C2.
From equation (5), we have t=xlnx.
⇒I2=tan−1(xlnx)+C2 ---(11).
Let us substitute equations (7) and (11) in equation (3).
⇒I=21(21ln(ln(x)+xln(x)−x)+C1)−21(tan−1(xlnx)+C2).
⇒I=41ln(ln(x)+xln(x)−x)+2C1−21tan−1(xlnx)−2C2.
Let us 2C1−2C2 as C, which is a constant of integration.
⇒I=41ln(ln(x)+xln(x)−x)−21tan−1(xlnx)+C.
So, we have found ∫ln4x−x4x2(1−lnx)dx=41ln(ln(x)+xln(x)−x)−21tan−1(xlnx)+C.
The correct option for the given problem is (b).
Note : We should confuse ln2x with lnx2, we get ln2x by squaring the lnx i.e., ln2x=(lnx)2. We should not confuse the formulas of integration. We have high chance of confusing the formula ∫x2−a2dx=2a1ln(x+ax−a)+C with ∫a2−x2dx=2a1ln(a−xa+x)+C. We should not forget to re-substitute the function of t again in the integral again. Similarly, we can also expect problems to find the given integral with limits.