Solveeit Logo

Question

Question: Evaluate the following indefinite integral \[\int{\dfrac{{{x}^{2}}\left( 1-\ln x \right)}{{{\ln }^{4...

Evaluate the following indefinite integral x2(1lnx)ln4xx4dx\int{\dfrac{{{x}^{2}}\left( 1-\ln x \right)}{{{\ln }^{4}}x-{{x}^{4}}}}dx
(a) 12ln(xlnx)14ln(ln2xx2)+C\dfrac{1}{2}\ln \left( \dfrac{x}{\ln x} \right)-\dfrac{1}{4}\ln \left( {{\ln }^{2}}x-{{x}^{2}} \right)+C,
(b) 14ln(ln(x)xln(x)+x)12tan1(lnxx)+C\dfrac{1}{4}\ln \left( \dfrac{\ln \left( x \right)-x}{\ln \left( x \right)+x} \right)-\dfrac{1}{2}{{\tan }^{-1}}\left( \dfrac{\ln x}{x} \right)+C,
(c) 14ln(ln(x)+xln(x)x)12tan1(lnxx)+C\dfrac{1}{4}\ln \left( \dfrac{\ln \left( x \right)+x}{\ln \left( x \right)-x} \right)-\dfrac{1}{2}{{\tan }^{-1}}\left( \dfrac{\ln x}{x} \right)+C,
(d) 14(ln(ln(x)xln(x)+x)+tan1(lnxx))+C\dfrac{1}{4}\left( \ln \left( \dfrac{\ln \left( x \right)-x}{\ln \left( x \right)+x} \right)+{{\tan }^{-1}}\left( \dfrac{\ln x}{x} \right) \right)+C.

Explanation

Solution

We start solving the problem by assigning a variable to the given integral. We then make the necessary arrangements required in integrand to divide it into the sum of two integrals. We then calculate each integral separately by assuming lnxx=t\dfrac{\ln x}{x}=t in each integral. We then use the integration formulas dxx2a2=12aln(xax+a)+C\int{\dfrac{dx}{{{x}^{2}}-{{a}^{2}}}}=\dfrac{1}{2a}\ln \left( \dfrac{x-a}{x+a} \right)+C and dxx2+a2=1atan1(xa)+C\int{\dfrac{dx}{{{x}^{2}}+{{a}^{2}}}}=\dfrac{1}{a}{{\tan }^{-1}}\left( \dfrac{x}{a} \right)+C to find the integrals in terms of ‘t’. We then substitute lnxx\dfrac{\ln x}{x} in place of t to get the required result.

Complete step-by-step answer :
According to the problem, we need to solve the indefinite integral x2(1lnx)ln4xx4dx\int{\dfrac{{{x}^{2}}\left( 1-\ln x \right)}{{{\ln }^{4}}x-{{x}^{4}}}}dx. Let us assume the integral be I.
So, we have I=x2(1lnx)ln4xx4dxI=\int{\dfrac{{{x}^{2}}\left( 1-\ln x \right)}{{{\ln }^{4}}x-{{x}^{4}}}}dx ----(1).
Let us multiply and divide integrand with 2.
I=2x2(1lnx)2(ln4xx4)dx\Rightarrow I=\int{\dfrac{2{{x}^{2}}\left( 1-\ln x \right)}{2\left( {{\ln }^{4}}x-{{x}^{4}} \right)}}dx.
I=122x2(1lnx)(ln2xx2)(ln2x+x2)dx\Rightarrow I=\dfrac{1}{2}\int{\dfrac{2{{x}^{2}}\left( 1-\ln x \right)}{\left( {{\ln }^{2}}x-{{x}^{2}} \right)\left( {{\ln }^{2}}x+{{x}^{2}} \right)}}dx.
I=12(2x2+ln2xln2x)(1lnx)(ln2xx2)(ln2x+x2)dx\Rightarrow I=\dfrac{1}{2}\int{\dfrac{\left( 2{{x}^{2}}+{{\ln }^{2}}x-{{\ln }^{2}}x \right)\left( 1-\ln x \right)}{\left( {{\ln }^{2}}x-{{x}^{2}} \right)\left( {{\ln }^{2}}x+{{x}^{2}} \right)}}dx.
I=12(ln2x+x2ln2x+x2)(1lnx)(ln2xx2)(ln2x+x2)dx\Rightarrow I=\dfrac{1}{2}\int{\dfrac{\left( {{\ln }^{2}}x+{{x}^{2}}-{{\ln }^{2}}x+{{x}^{2}} \right)\left( 1-\ln x \right)}{\left( {{\ln }^{2}}x-{{x}^{2}} \right)\left( {{\ln }^{2}}x+{{x}^{2}} \right)}}dx.
I=12((ln2x+x2)(ln2xx2))(1lnx)(ln2xx2)(ln2x+x2)dx\Rightarrow I=\dfrac{1}{2}\int{\dfrac{\left( \left( {{\ln }^{2}}x+{{x}^{2}} \right)-\left( {{\ln }^{2}}x-{{x}^{2}} \right) \right)\left( 1-\ln x \right)}{\left( {{\ln }^{2}}x-{{x}^{2}} \right)\left( {{\ln }^{2}}x+{{x}^{2}} \right)}}dx.
I=12((ln2x+x2)(1lnx)(ln2xx2)(ln2x+x2))((ln2xx2)(1lnx)(ln2xx2)(ln2x+x2))dx\Rightarrow I=\dfrac{1}{2}\int{\left( \dfrac{\left( {{\ln }^{2}}x+{{x}^{2}} \right)\left( 1-\ln x \right)}{\left( {{\ln }^{2}}x-{{x}^{2}} \right)\left( {{\ln }^{2}}x+{{x}^{2}} \right)} \right)-\left( \dfrac{\left( {{\ln }^{2}}x-{{x}^{2}} \right)\left( 1-\ln x \right)}{\left( {{\ln }^{2}}x-{{x}^{2}} \right)\left( {{\ln }^{2}}x+{{x}^{2}} \right)} \right)}dx.
I=12((1lnx)(ln2xx2))((1lnx)(ln2x+x2))dx\Rightarrow I=\dfrac{1}{2}\int{\left( \dfrac{\left( 1-\ln x \right)}{\left( {{\ln }^{2}}x-{{x}^{2}} \right)} \right)-\left( \dfrac{\left( 1-\ln x \right)}{\left( {{\ln }^{2}}x+{{x}^{2}} \right)} \right)}dx ----(2).
We know that f(x)+g(x)dx=f(x)dx+g(x)dx\int{f\left( x \right)+g\left( x \right)}dx=\int{f\left( x \right)dx}+\int{g\left( x \right)dx}. We use this result in equation (2).
I=12((1lnx)(ln2xx2)dx)12((1lnx)(ln2x+x2)dx)\Rightarrow I=\dfrac{1}{2}\left( \int{\dfrac{\left( 1-\ln x \right)}{\left( {{\ln }^{2}}x-{{x}^{2}} \right)}dx} \right)-\dfrac{1}{2}\left( \int{\dfrac{\left( 1-\ln x \right)}{\left( {{\ln }^{2}}x+{{x}^{2}} \right)}dx} \right).
Let us assume (1lnx)(ln2xx2)dx\int{\dfrac{\left( 1-\ln x \right)}{\left( {{\ln }^{2}}x-{{x}^{2}} \right)}dx} as I1{{I}_{1}} and (1lnx)(ln2x+x2)dx\int{\dfrac{\left( 1-\ln x \right)}{\left( {{\ln }^{2}}x+{{x}^{2}} \right)}dx} as I2{{I}_{2}}.
So, we get I=12I112I2I=\dfrac{1}{2}{{I}_{1}}-\dfrac{1}{2}{{I}_{2}} ---(3).
Let us solve I1{{I}_{1}} and I2{{I}_{2}} separately and then substitute in equation (3).
Let us solve I1{{I}_{1}} first. So, we have I1=(1lnx)(ln2xx2)dx{{I}_{1}}=\int{\dfrac{\left( 1-\ln x \right)}{\left( {{\ln }^{2}}x-{{x}^{2}} \right)}dx}.
Let us take x2{{x}^{2}} common in denominator of the integrand.
I1=(1lnx)x2(ln2xx21)dx\Rightarrow {{I}_{1}}=\int{\dfrac{\left( 1-\ln x \right)}{{{x}^{2}}\left( \dfrac{{{\ln }^{2}}x}{{{x}^{2}}}-1 \right)}dx}.
I1=(1lnx)x2((lnxx)21)dx\Rightarrow {{I}_{1}}=\int{\dfrac{\left( 1-\ln x \right)}{{{x}^{2}}\left( {{\left( \dfrac{\ln x}{x} \right)}^{2}}-1 \right)}dx} ---(4).
Let us assume lnxx=t\dfrac{\ln x}{x}=t ---(5). We differentiate in both sides.
d(lnxx)=dt\Rightarrow d\left( \dfrac{\ln x}{x} \right)=dt.
We know that d(uv)=vduudvv2d\left( \dfrac{u}{v} \right)=\dfrac{vdu-udv}{{{v}^{2}}}.
(x)d(lnx)(lnx)d(x)x2=dt\Rightarrow \dfrac{\left( x \right)d\left( \ln x \right)-\left( \ln x \right)d\left( x \right)}{{{x}^{2}}}=dt.
We know that d(lnx)=1xdxd\left( \ln x \right)=\dfrac{1}{x}dx.
(x)(1x)dx(lnx)dxx2=dt\Rightarrow \dfrac{\left( x \right)\left( \dfrac{1}{x} \right)dx-\left( \ln x \right)dx}{{{x}^{2}}}=dt.
(1)dx(lnx)dxx2=dt\Rightarrow \dfrac{\left( 1 \right)dx-\left( \ln x \right)dx}{{{x}^{2}}}=dt.
(1lnx)x2dx=dt\Rightarrow \dfrac{\left( 1-\ln x \right)}{{{x}^{2}}}dx=dt ---(6).
Let us substitute equations (5) and (6) in equation (4).
I1=dtt21\Rightarrow {{I}_{1}}=\int{\dfrac{dt}{{{t}^{2}}-1}}.
I1=dtt212\Rightarrow {{I}_{1}}=\int{\dfrac{dt}{{{t}^{2}}-{{1}^{2}}}}.
We know that dxx2a2=12aln(xax+a)+C\int{\dfrac{dx}{{{x}^{2}}-{{a}^{2}}}}=\dfrac{1}{2a}\ln \left( \dfrac{x-a}{x+a} \right)+C.
I1=12(1)ln(t1t+1)+C1\Rightarrow {{I}_{1}}=\dfrac{1}{2\left( 1 \right)}\ln \left( \dfrac{t-1}{t+1} \right)+{{C}_{1}}.
I1=12ln(t1t+1)+C1\Rightarrow {{I}_{1}}=\dfrac{1}{2}\ln \left( \dfrac{t-1}{t+1} \right)+{{C}_{1}}.
From equation (5), we have t=lnxxt=\dfrac{\ln x}{x}.
I1=12ln((lnxx)1(lnxx)+1)+C1\Rightarrow {{I}_{1}}=\dfrac{1}{2}\ln \left( \dfrac{\left( \dfrac{\ln x}{x} \right)-1}{\left( \dfrac{\ln x}{x} \right)+1} \right)+{{C}_{1}}.
I1=12ln((lnxxx)(lnx+xx))+C1\Rightarrow {{I}_{1}}=\dfrac{1}{2}\ln \left( \dfrac{\left( \dfrac{\ln x-x}{x} \right)}{\left( \dfrac{\ln x+x}{x} \right)} \right)+{{C}_{1}}.
I1=12ln(lnxxlnx+x)+C1\Rightarrow {{I}_{1}}=\dfrac{1}{2}\ln \left( \dfrac{\ln x-x}{\ln x+x} \right)+{{C}_{1}} ---(7).
Now, let us solve I2{{I}_{2}} first. So, we have I2=(1lnx)(ln2x+x2)dx{{I}_{2}}=\int{\dfrac{\left( 1-\ln x \right)}{\left( {{\ln }^{2}}x+{{x}^{2}} \right)}dx}.
Let us take x2{{x}^{2}} common in denominator of the integrand.
I2=(1lnx)x2(ln2xx2+1)dx\Rightarrow {{I}_{2}}=\int{\dfrac{\left( 1-\ln x \right)}{{{x}^{2}}\left( \dfrac{{{\ln }^{2}}x}{{{x}^{2}}}+1 \right)}dx}.
I2=(1lnx)x2((lnxx)2+1)dx\Rightarrow {{I}_{2}}=\int{\dfrac{\left( 1-\ln x \right)}{{{x}^{2}}\left( {{\left( \dfrac{\ln x}{x} \right)}^{2}}+1 \right)}dx}---(8).
Let us assume lnxx=t\dfrac{\ln x}{x}=t ---(9). We differentiate in both sides.
d(lnxx)=dt\Rightarrow d\left( \dfrac{\ln x}{x} \right)=dt.
We know that d(uv)=vduudvv2d\left( \dfrac{u}{v} \right)=\dfrac{vdu-udv}{{{v}^{2}}}.
(x)d(lnx)(lnx)d(x)x2=dt\Rightarrow \dfrac{\left( x \right)d\left( \ln x \right)-\left( \ln x \right)d\left( x \right)}{{{x}^{2}}}=dt.
We know that d(lnx)=1xdxd\left( \ln x \right)=\dfrac{1}{x}dx.
(x)(1x)dx(lnx)dxx2=dt\Rightarrow \dfrac{\left( x \right)\left( \dfrac{1}{x} \right)dx-\left( \ln x \right)dx}{{{x}^{2}}}=dt.
(1)dx(lnx)dxx2=dt\Rightarrow \dfrac{\left( 1 \right)dx-\left( \ln x \right)dx}{{{x}^{2}}}=dt.
(1lnx)x2dx=dt\Rightarrow \dfrac{\left( 1-\ln x \right)}{{{x}^{2}}}dx=dt ---(10).
Let us substitute equations (9) and (10) in equation (8).
I2=dtt2+1\Rightarrow {{I}_{2}}=\int{\dfrac{dt}{{{t}^{2}}+1}}.
I2=dtt2+12\Rightarrow {{I}_{2}}=\int{\dfrac{dt}{{{t}^{2}}+{{1}^{2}}}}.
We know that dxx2+a2=1atan1(xa)+C\int{\dfrac{dx}{{{x}^{2}}+{{a}^{2}}}}=\dfrac{1}{a}{{\tan }^{-1}}\left( \dfrac{x}{a} \right)+C.
I2=11tan1(t1)+C2\Rightarrow {{I}_{2}}=\dfrac{1}{1}{{\tan }^{-1}}\left( \dfrac{t}{1} \right)+{{C}_{2}}.
I2=tan1(t)+C2\Rightarrow {{I}_{2}}={{\tan }^{-1}}\left( t \right)+{{C}_{2}}.
From equation (5), we have t=lnxxt=\dfrac{\ln x}{x}.
I2=tan1(lnxx)+C2\Rightarrow {{I}_{2}}={{\tan }^{-1}}\left( \dfrac{\ln x}{x} \right)+{{C}_{2}} ---(11).
Let us substitute equations (7) and (11) in equation (3).
I=12(12ln(ln(x)xln(x)+x)+C1)12(tan1(lnxx)+C2)\Rightarrow I=\dfrac{1}{2}\left( \dfrac{1}{2}\ln \left( \dfrac{\ln \left( x \right)-x}{\ln \left( x \right)+x} \right)+{{C}_{1}} \right)-\dfrac{1}{2}\left( {{\tan }^{-1}}\left( \dfrac{\ln x}{x} \right)+{{C}_{2}} \right).
I=14ln(ln(x)xln(x)+x)+C1212tan1(lnxx)C22\Rightarrow I=\dfrac{1}{4}\ln \left( \dfrac{\ln \left( x \right)-x}{\ln \left( x \right)+x} \right)+\dfrac{{{C}_{1}}}{2}-\dfrac{1}{2}{{\tan }^{-1}}\left( \dfrac{\ln x}{x} \right)-\dfrac{{{C}_{2}}}{2}.
Let us C12C22\dfrac{{{C}_{1}}}{2}-\dfrac{{{C}_{2}}}{2} as C, which is a constant of integration.
I=14ln(ln(x)xln(x)+x)12tan1(lnxx)+C\Rightarrow I=\dfrac{1}{4}\ln \left( \dfrac{\ln \left( x \right)-x}{\ln \left( x \right)+x} \right)-\dfrac{1}{2}{{\tan }^{-1}}\left( \dfrac{\ln x}{x} \right)+C.
So, we have found x2(1lnx)ln4xx4dx=14ln(ln(x)xln(x)+x)12tan1(lnxx)+C\int{\dfrac{{{x}^{2}}\left( 1-\ln x \right)}{{{\ln }^{4}}x-{{x}^{4}}}}dx=\dfrac{1}{4}\ln \left( \dfrac{\ln \left( x \right)-x}{\ln \left( x \right)+x} \right)-\dfrac{1}{2}{{\tan }^{-1}}\left( \dfrac{\ln x}{x} \right)+C.
The correct option for the given problem is (b).

Note : We should confuse ln2x{{\ln }^{2}}x with lnx2\ln {{x}^{2}}, we get ln2x{{\ln }^{2}}x by squaring the lnx\ln x i.e., ln2x=(lnx)2{{\ln }^{2}}x={{\left( \ln x \right)}^{2}}. We should not confuse the formulas of integration. We have high chance of confusing the formula dxx2a2=12aln(xax+a)+C\int{\dfrac{dx}{{{x}^{2}}-{{a}^{2}}}}=\dfrac{1}{2a}\ln \left( \dfrac{x-a}{x+a} \right)+C with dxa2x2=12aln(a+xax)+C\int{\dfrac{dx}{{{a}^{2}}-{{x}^{2}}}}=\dfrac{1}{2a}\ln \left( \dfrac{a+x}{a-x} \right)+C. We should not forget to re-substitute the function of t again in the integral again. Similarly, we can also expect problems to find the given integral with limits.