Solveeit Logo

Question

Question: Evaluate the following indefinite integral \(\int{{{\sec }^{2}}x{{\csc }^{2}}xdx}\)...

Evaluate the following indefinite integral sec2xcsc2xdx\int{{{\sec }^{2}}x{{\csc }^{2}}xdx}

Explanation

Solution

Hint: Convert the given integral to ‘sin’ and ‘cos’ functions, now divide numerator and denominator by cos4x{{\cos }^{4}}x . Later solve the integral to get the answer.

Complete step-by-step answer:

Here, integral given is
sec2xcsc2xdx\int{{{\sec }^{2}}x{{\csc }^{2}}xdx}
Let given integral be I, hence
I=sec2xcsc2xdxI=\int{{{\sec }^{2}}x{{\csc }^{2}}xdx}……………(i)
We know,
secx=1cosx\sec x=\dfrac{1}{\cos x} and cscx=1sinxcscx=\dfrac{1}{\sin x}
Hence, I can be written as
I=1sin2xcos2xdxI=\int{\dfrac{1}{{{\sin }^{2}}x{{\cos }^{2}}x}dx}
Now, let us convert the given integral to secx\sec x and tanx\tan x by dividing the numerator and denominator cos4x{{\cos }^{4}}xand using the relation tanx=sinxcosx\tan x=\dfrac{\sin x}{\cos x} .
Hence, we get
I=1cos4xsin2xcos2xcos4xdx=sec4xsin2xcos2xcos2xcos2xdxI=\int{\dfrac{\dfrac{1}{{{\cos }^{4}}x}}{\dfrac{{{\sin }^{2}}x{{\cos }^{2}}x}{{{\cos }^{4}}x}}}dx=\int{\dfrac{{{\sec }^{4}}x}{\dfrac{{{\sin }^{2}}x}{{{\cos }^{2}}x}\dfrac{{{\cos }^{2}}x}{{{\cos }^{2}}x}}}dx
I=sec4xtan2xdxI=\int{\dfrac{{{\sec }^{4}}x}{{{\tan }^{2}}x}}dx
Or
I=sec2xsec2xtan2xdxI=\int{\dfrac{{{\sec }^{2}}x{{\sec }^{2}}x}{{{\tan }^{2}}x}}dx
Now, we can convert one sec2x'{{\sec }^{2}}x' to 1+tan2x'1+{{\tan }^{2}}x' in numerator by using trigonometric identity given, so the above expression can be written as,
I=(1+tan2x)sec2xtan2xdxI=\int{\dfrac{(1+ta{{n}^{2}}x)se{{c}^{2}}x}{{{\tan }^{2}}x}}dx…………………. (ii)
Now, we can suppose ‘tan x’ as ‘t’ and get derivative of it as ‘sec2x{{\sec }^{2}}x’ so that
We can get an integral in ‘x’ only.
Let t=tanxt=\tan x
Differentiating both sides w.r.t ‘x’, we get

As we know ddx(tanx)=sec2x\dfrac{d}{dx}(tanx)=se{{c}^{2}}x, the above expression can be written as,
dtdx=sec2x\dfrac{dt}{dx}=se{{c}^{2}}x
Now, cross multiplying above equation, we get
dt=sec2xdxdt={{\sec }^{2}}xdx
Hence, integral ‘I’ can be re-written in terms of ‘t’ as
I=1+t2t2dt=(1t2+t2t2)dtI=\int{\dfrac{1+{{t}^{2}}}{{{t}^{2}}}}dt=\int{\left( \dfrac{1}{{{t}^{2}}}+\dfrac{{{t}^{2}}}{{{t}^{2}}} \right)}dt
or
I=(1t2+1)dtI=\int{\left( \dfrac{1}{{{t}^{2}}}+1 \right)}dt
Now we know that
xndx=xn+1n+1\int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n+1}}
Hence, integral can be simplified as
I=t2dt+todtI=\int{{{t}^{-{{2}^{{}}}}}dt+\int{{{t}^{o}}dt}}
Using the above identity of integral, we get
I=t2+12+1+to+10+1+cI=\dfrac{{{t}^{-2+1}}}{-2+1}+\dfrac{{{t}^{o+1}}}{0+1}+c
I=t11+t11+cI=\dfrac{{{t}^{-1}}}{-1}+\dfrac{{{t}^{1}}}{1}+c
Or
I=1t+t+cI=\dfrac{-1}{t}+t+c
Now, putting value of t as tanx\tan x in the above equation, we can get value of I as
I=1tanx+tanx+cI=\dfrac{-1}{\operatorname{tanx}}+\tan x+c
Hence,
sec2csc2xdx=1tanx+tanx+c\int{{{\sec }^{2}}{{\csc }^{2}}xdx=\dfrac{-1}{\tan x}+\tan x+c}

Note: Diving numerator and denominator bycos4x{{\cos }^{4}}x of integral 1sin2xcos2x\int{\dfrac{1}{{{\sin }^{2}}xco{{s}^{2}}x}} is the key point of the solution. Try to convert these kind of questions to tanx\tan x and sec2x{{\sec }^{2}}x if power of sinx\sin x and cosx\cos x are even so that we can always substitute tanx\tan x and get derivative as sec2x{{\sec }^{2}}x.
Another approach for the given integration would be that we can convert sec2x{{\sec }^{2}}x to 1+tan2x1+{{\tan }^{2}}x, then tanx\tan x to 1cotx\dfrac{1}{\cot x}, Now, suppose cotx=t\cot x=t expression would be
(1+1cot2x)csc2xdx\int{\left( 1+\dfrac{1}{{{\cot }^{2}}x} \right)}{{\csc }^{2}}xdx and solve accordingly.