Question
Mathematics Question on Trigonometric Ratios of Some Specific Angles
Evaluate the following.
(i) sin60° cos30° + sin30° cos 60°
(ii) 2tan245° + cos230° - sin260°
(iii) sec30°+cosec30°cos45°
(iv) sec 30°+cos 60°+cot 45°sin 30°+tan 45°cosec 60°
(v) sin230°+cos230°5cos260°+4sec230°−tan245°
(i) sin60° cos30° + sin30° cos 60°
=23×23+(21)×(21)
=43+41=44=1
(ii) 2tan245° + cos230° - sin260°
=2(1)2\+(23)2−(23)2
= 2 + 0
= 2
**(iii) **(sec 30°+cosec 30°)cos 45°
=[(32)+2](21)
=[3(2+23)](21)
=[2×(2+23)](1×3)
=[22(3+1)]3
Multiplying numerator and denominator by 2(3−1), we get
=[22(3+1)]3×2(3−1)2(3−1)
=4(3−1)(32−6)
=8(32−6)
(iv) (sec 30°+cos 60°+cot 45°)(sin 30°+tan 45°−cosec 60°)
=[32+21+121+1−32]
=32+2323−32
=[234+332333−4]
=(33+4)(33−4)
Multiplying numerator and denominator by 33−4, we get
=(33+4)(33−4)(33−4)(33−4)
=(27−16)(27+16−243)
=11(43−243)
**(v) **(sin230°+cos230°)(5cos260°+4sec230°−tan245°)
=[(21)2\+(23)2][5×(21)2\+4×(32)2\-(1)2]
=(41+43)(45+316−1)
=[43+1][1215+64−12]
=441267
=1267