Solveeit Logo

Question

Question: Evaluate the following function \(\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\...

Evaluate the following function limxa(2+x)52(a+2)52xa\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a} .

Explanation

Solution

- Hint:For solving this question, we will use the formula limxtxntnxt=ntn1\underset{x\to t}{\mathop{\lim }}\,\dfrac{{{x}^{n}}-{{t}^{n}}}{x-t}=n{{t}^{n-1}} . After that, we will transform the terms in the given limit so, that we can apply the formula limxtxntnxt=ntn1\underset{x\to t}{\mathop{\lim }}\,\dfrac{{{x}^{n}}-{{t}^{n}}}{x-t}=n{{t}^{n-1}} directly. Then, we will solve further to get the final answer.

Complete step-by-step solution -

Given:
We have to find the value of the limit limxa(2+x)52(a+2)52xa\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a} .
Now, before we proceed we should know the following formula:
limxtxntnxt=ntn1...................(1)\underset{x\to t}{\mathop{\lim }}\,\dfrac{{{x}^{n}}-{{t}^{n}}}{x-t}=n{{t}^{n-1}}...................\left( 1 \right)
Now, we will solve the following limit:
limxa(2+x)52(a+2)52xa\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}
Now, we will write xa=(x+2)(a+2)x-a=\left( x+2 \right)-\left( a+2 \right) in the above limit. Then,
limxa(2+x)52(a+2)52xa limxa(2+x)52(a+2)52xa=limxa(x+2)52(a+2)52(x+2)(a+2).................(2) \begin{aligned} & \underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a} \\\ & \Rightarrow \underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( x+2 \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{\left( x+2 \right)-\left( a+2 \right)}.................\left( 2 \right) \\\ \end{aligned}
Now, let x+2=yx+2=y . Then,
limxa(x+2) limxay=a+2 \begin{aligned} & \underset{x\to a}{\mathop{\lim }}\,\left( x+2 \right) \\\ & \Rightarrow \underset{x\to a}{\mathop{\lim }}\,y=a+2 \\\ \end{aligned}
Now, from the above result, we conclude that as the value of xx approaches to aa , then the value of yy approaches to a+2a+2 . So, we can write (xa)=(ya+2)\left( x\to a \right)=\left( y\to a+2 \right) and (x+2)=y\left( x+2 \right)=y in the equation (2). Then,
limxa(2+x)52(a+2)52xa=limxa(x+2)52(a+2)52(x+2)(a+2) limxa(2+x)52(a+2)52xa=limya+2y52(a+2)y(a+2) \begin{aligned} & \underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( x+2 \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{\left( x+2 \right)-\left( a+2 \right)} \\\ & \Rightarrow \underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}=\underset{y\to a+2}{\mathop{\lim }}\,\dfrac{{{y}^{\dfrac{5}{2}}}-\left( a+2 \right)}{y-\left( a+2 \right)} \\\ \end{aligned}
Now, let a+2=ba+2=b so, we will write a+2=ba+2=b in the above equation. Then,
limxa(2+x)52(a+2)52xa=limya+2y52(a+2)y(a+2) limxa(2+x)52(a+2)52xa=limyby52byb \begin{aligned} & \underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}=\underset{y\to a+2}{\mathop{\lim }}\,\dfrac{{{y}^{\dfrac{5}{2}}}-\left( a+2 \right)}{y-\left( a+2 \right)} \\\ & \Rightarrow \underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}=\underset{y\to b}{\mathop{\lim }}\,\dfrac{{{y}^{\dfrac{5}{2}}}-b}{y-b} \\\ \end{aligned}
Now, we will use the formula from the equation (1) with the value of n=52n=\dfrac{5}{2} in the above equation. Then,
limxa(2+x)52(a+2)52xa=limyby52byb limxa(2+x)52(a+2)52xa=52(b)(521) limxa(2+x)52(a+2)52xa=52(b32) \begin{aligned} & \underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}=\underset{y\to b}{\mathop{\lim }}\,\dfrac{{{y}^{\dfrac{5}{2}}}-b}{y-b} \\\ & \Rightarrow \underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}=\dfrac{5}{2}{{\left( b \right)}^{\left( \dfrac{5}{2}-1 \right)}} \\\ & \Rightarrow \underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}=\dfrac{5}{2}\left( {{b}^{\dfrac{3}{2}}} \right) \\\ \end{aligned}
Now, as per our assumption a+2=ba+2=b so, we will write b=a+2b=a+2 in the above equation. Then,
limxa(2+x)52(a+2)52xa=52(b32) limxa(2+x)52(a+2)52xa=52(a+2)32 \begin{aligned} & \underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}=\dfrac{5}{2}\left( {{b}^{\dfrac{3}{2}}} \right) \\\ & \Rightarrow \underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}=\dfrac{5}{2}{{\left( a+2 \right)}^{\dfrac{3}{2}}} \\\ \end{aligned}
Now, from the above result, we conclude that the value of limit limxa(2+x)52(a+2)52xa\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a} will be equal to 52(a+2)32\dfrac{5}{2}{{\left( a+2 \right)}^{\dfrac{3}{2}}} .
Thus, limxa(2+x)52(a+2)52xa=52(a+2)32\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}=\dfrac{5}{2}{{\left( a+2 \right)}^{\dfrac{3}{2}}} .

Note: Here, the student should first understand the given limit limxa(2+x)52(a+2)52xa\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a} and then proceed in the right direction to get the correct answer quickly. And we should proceed with the stepwise approach and first, we should try to transform the terms in the given limit so, that we can apply the formula limxtxntnxt=ntn1\underset{x\to t}{\mathop{\lim }}\,\dfrac{{{x}^{n}}-{{t}^{n}}}{x-t}=n{{t}^{n-1}} directly and then solve further without any mistake. Moreover, for the objective problem, we can easily write the result directly by analysing the terms in the given limit.