Solveeit Logo

Question

Question: Evaluate the following expression- \(\sin {{0}^{c}}+2\cos {{0}^{c}}+3\sin {{\left( \dfrac{\pi }{2} \...

Evaluate the following expression- sin0c+2cos0c+3sin(π2)c+4cos(π2)c+5sec0c+6cosec(π2)c\sin {{0}^{c}}+2\cos {{0}^{c}}+3\sin {{\left( \dfrac{\pi }{2} \right)}^{c}}+4\cos {{\left( \dfrac{\pi }{2} \right)}^{c}}+5\sec {{0}^{c}}+6\text{cosec}{{\left( \dfrac{\pi }{2} \right)}^{c}} .

Explanation

Solution

Hint: The given angles are in radians and we can convert them into degrees. Then, we can see that all the angles are standard angles. We can simplify it by converting sec in terms of cos and cosec in terms of sin and then just put the respective values.

Complete step-by-step answer:
The expression given in the question is sin0c+2cos0c+3sin(π2)c+4cos(π2)c+5sec0c+6cosec(π2)c\sin {{0}^{c}}+2\cos {{0}^{c}}+3\sin {{\left( \dfrac{\pi }{2} \right)}^{c}}+4\cos {{\left( \dfrac{\pi }{2} \right)}^{c}}+5\sec {{0}^{c}}+6\text{cosec}{{\left( \dfrac{\pi }{2} \right)}^{c}}.

We can convert the angle π2\dfrac{\pi }{2} into degrees by multiplying it with 180π\dfrac{180}{\pi } . Therefore, we get that angle 0c0×180π0{{0}^{c}}\Rightarrow 0\times \dfrac{180}{\pi }\Rightarrow 0 and angle (π2)cπ2×180π=90{{\left( \dfrac{\pi }{2} \right)}^{c}}\Rightarrow \dfrac{\pi }{2}\times \dfrac{180}{\pi }=90{}^\circ . Now, we can write the given expression as,
sin0+2cos0+3sin90+4cos90+5sec0+6cosec90....(1)\text{sin}{{0}^{\circ }}+2\cos {{\text{0}}^{\circ }}+3\sin {{90}^{\circ }}+4\cos {{90}^{\circ }}+5\sec {{0}^{\circ }}+6\,\text{cosec}{{90}^{\circ }}....(1)

The values of standard angles in degrees are given in the table below.

We should also remember that cosecx=1sin x\text{cosec}\,\text{x=}\dfrac{\text{1}}{\text{sin x}} and secx=1cos x\sec \,\text{x=}\dfrac{\text{1}}{\text{cos x}}.
So now simplifying equation (1) by transforming cosec in terms of sin and sec in terms of cos, we get
sin0+2cos0+3sin90+4cos90+5cos0+6sin90\Rightarrow \text{sin}{{0}^{\circ }}+2\cos {{\text{0}}^{\circ }}+3\sin {{90}^{\circ }}+4\cos {{90}^{\circ }}+\dfrac{5}{\cos {{0}^{\circ }}}+\dfrac{6}{\sin {{90}^{\circ }}}

Now putting values from the above table,
= 0+2×1+3×1+4×0+51+61\text{= 0}+2\times 1+3\times 1+4\times 0+\dfrac{5}{1}+\dfrac{6}{1}

Now adding all the numbers we get,
=16\text{=16}

Hence 16 is the answer.

Note: Remembering all the values of sin, cos, tan is the key here and knowing the relationship between sin and cosec, sec and cos is important. We can commit mistake in a hurry by substituting cos0=0\cos {{0}^{\circ }}=0 instead of cos0=1\cos {{0}^{\circ }}=1 and substituting sin90=0\sin {{90}^{\circ }}=0 instead of sin90=1\sin {{90}^{\circ }}=1.