Solveeit Logo

Question

Question: Evaluate the following expression: \[{{\left( \dfrac{1+\cos \dfrac{\pi }{8}-i\sin \dfrac{\pi }{8}}...

Evaluate the following expression:
(1+cosπ8isinπ81+cosπ8+isinπ8)8={{\left( \dfrac{1+\cos \dfrac{\pi }{8}-i\sin \dfrac{\pi }{8}}{1+\cos \dfrac{\pi }{8}+i\sin \dfrac{\pi }{8}} \right)}^{8}}=
(a) 11
(b) 1-1
(c) 22
(d) 12\dfrac{1}{2}

Explanation

Solution

- Hint: First of all, eliminate 1 from numerator and denominator by using half angle formulas that are cos2θ=2cos2θ1\cos 2\theta =2{{\cos }^{2}}\theta -1 and sin2θ=2sinθcosθ\sin 2\theta =2\sin \theta \cos \theta and then use eiθ=cosθ+isinθ{{e}^{i\theta }}=\cos \theta +i\sin \theta .

Complete step-by-step solution -
We have to find the value of
A=(1+cosπ8isinπ81+cosπ8+isinπ8)8....(i)A={{\left( \dfrac{1+\cos \dfrac{\pi }{8}-i\sin \dfrac{\pi }{8}}{1+\cos \dfrac{\pi }{8}+i\sin \dfrac{\pi }{8}} \right)}^{8}}....\left( i \right)
We know that, cos2θ=2cos2θ1\cos 2\theta =2{{\cos }^{2}}\theta -1 when 2θ=π82\theta =\dfrac{\pi }{8}, then θ=π16\theta =\dfrac{\pi }{16}.
Therefore, cosπ8=2cos2π161\cos \dfrac{\pi }{8}=2{{\cos }^{2}}\dfrac{\pi }{16}-1
Also, sin2θ=2sinθcosθ\sin 2\theta =2\sin \theta \cos \theta
sinπ8=2sinπ16cosπ16\sin \dfrac{\pi }{8}=2\sin \dfrac{\pi }{16}\cos \dfrac{\pi }{16}
Putting the values of cosπ8\cos \dfrac{\pi }{8} and sinπ8\sin \dfrac{\pi }{8}in equation (i), we get,
A=(1+2cos2π161i(2sinπ16cosπ16)1+2cos2π161+i(2sinπ16cosπ16))8A={{\left( \dfrac{1+2{{\cos }^{2}}\dfrac{\pi }{16}-1-i\left( 2\sin \dfrac{\pi }{16}\cos \dfrac{\pi }{16} \right)}{1+2{{\cos }^{2}}\dfrac{\pi }{16}-1+i\left( 2\sin \dfrac{\pi }{16}\cos \dfrac{\pi }{16} \right)} \right)}^{8}}
A=(2cos2π16i(2sinπ16cosπ16)2cos2π16+i(2sinπ16cosπ16))8\Rightarrow A={{\left( \dfrac{2{{\cos }^{2}}\dfrac{\pi }{16}-i\left( 2\sin \dfrac{\pi }{16}\cos \dfrac{\pi }{16} \right)}{2{{\cos }^{2}}\dfrac{\pi }{16}+i\left( 2\sin \dfrac{\pi }{16}\cos \dfrac{\pi }{16} \right)} \right)}^{8}}
Taking 2cosπ162\cos \dfrac{\pi }{16} common from numerator and denominator and cancelling it, we get
A=(cosπ16isinπ16cosπ16+isinπ16)8...(ii)A={{\left( \dfrac{\cos \dfrac{\pi }{16}-i\sin \dfrac{\pi }{16}}{\cos \dfrac{\pi }{16}+i\sin \dfrac{\pi }{16}} \right)}^{8}}...\left( ii \right)
We know that eiθ=cosθ+isinθ....(iii){{e}^{i\theta }}=\cos \theta +i\sin \theta ....\left( iii \right)
Therefore, eiπ16=cosπ16+isinπ16{{e}^{i\dfrac{\pi }{16}}}=\cos \dfrac{\pi }{16}+i\sin \dfrac{\pi }{16}
ei(π16)=cos(π16)+isin(π16){{e}^{i\left( -\dfrac{\pi }{16} \right)}}=\cos \left( -\dfrac{\pi }{16} \right)+i\sin \left( -\dfrac{\pi }{16} \right)
As sin(θ)=sinθ\sin \left( -\theta \right)=-\sin \theta and cos(θ)=cosθ\cos \left( -\theta \right)=\cos \theta
Therefore, eiπ6=cos(π16)isin(π16){{e}^{-i\dfrac{\pi }{6}}}=\cos \left( \dfrac{\pi }{16} \right)-i\sin \left( \dfrac{\pi }{16} \right)
Putting these values in equation (ii), we get
A=[eiπ16eiπ16]8A={{\left[ \dfrac{{{e}^{-i\dfrac{\pi }{16}}}}{{{e}^{i\dfrac{\pi }{16}}}} \right]}^{8}}
We know that, aman=amn\dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}}
Therefore, A=[eiπ16iπ16]8A={{\left[ {{e}^{-\dfrac{i\pi }{16}-\dfrac{i\pi }{16}}} \right]}^{8}}
A=[eiπ8]8\Rightarrow A={{\left[ {{e}^{-\dfrac{i\pi }{8}}} \right]}^{8}}
As (am)n=am.n{{\left( {{a}^{m}} \right)}^{n}}={{a}^{m.n}}
We get, A=[eiπ8.8]=eiπA=\left[ {{e}^{\dfrac{-i\pi }{8}.8}} \right]={{e}^{-i\pi }}
From equation (iii),
A=eiπ=cos(π)+isin(π)A={{e}^{-i\pi }}=\cos \left( -\pi \right)+i\sin \left( -\pi \right)
As, cos(π)=cos(π)=1\cos \left( -\pi \right)=\cos \left( \pi \right)=-1 and sin(π)=sinπ=0\sin \left( -\pi \right)=-\sin \pi =0
We get, A=eiπ=1A={{e}^{-i\pi }}=-1
Therefore, option (b) is the correct answer.

Note: In this question, students must take the utmost care of angles and their transformation. Students often make this mistake of converting π8\dfrac{\pi }{8} into π4\dfrac{\pi }{4} instead of π16.\dfrac{\pi }{16}. So this must be taken care of. Also always try to reduce the angles into sine and cosine of familiar angles like π,π2,π4,etc.\pi ,\dfrac{\pi }{2},\dfrac{\pi }{4},etc.