Solveeit Logo

Question

Question: Evaluate the following expression \(\int{\sqrt{\tan x}dx}\)....

Evaluate the following expression tanxdx\int{\sqrt{\tan x}dx}.

Explanation

Solution

Hint: In order to solve this question, we will first consider tanx=t2\tan x={{t}^{2}} and then we will simplify it to form an easily integrable form and then we will integrate it to get our answer. While solving this question, we need to remember that 1x2+a2dx=1atan1xa\int{\dfrac{1}{{{x}^{2}}+{{a}^{2}}}dx=\dfrac{1}{a}{{\tan }^{-1}}\dfrac{x}{a}} and 1x2a2dx=12alnxax+a\int{\dfrac{1}{{{x}^{2}}-{{a}^{2}}}dx=\dfrac{1}{2a}\ln }\left| \dfrac{x-a}{x+a} \right|, By using these, we can solve this question.
Complete step-by-step answer:
In this question, we have asked to find the integral of tanx\sqrt{\tan x}. To solve this question, let us consider, I=tanxdxI=\int{\sqrt{\tan x}}dx and tanx=t\sqrt{\tan x}=t. So, we can say d(tanx)=d(t)d\left( \sqrt{\tan x} \right)=d\left( t \right) and we get, sec2x2tanxdx=dt\dfrac{{{\sec }^{2}}x}{2\sqrt{\tan x}}dx=dt. Now, we know that sec2x=1+tan2x=1+t4{{\sec }^{2}}x=1+{{\tan }^{2}}x=1+{{t}^{4}}. Therefore, we get, 1+t42tdx=dt\dfrac{1+{{t}^{4}}}{2t}dx=dt, which can be written as, dx=2t1+t4dtdx=\dfrac{2t}{1+{{t}^{4}}}dt. Therefore, we get the integral as,
I=2t21+t4dt I=t.2t1+t4dt \begin{aligned} & I=\int{\dfrac{2{{t}^{2}}}{1+{{t}^{4}}}}dt \\\ & I=\int{\dfrac{t.2t}{1+{{t}^{4}}}}dt \\\ \end{aligned}
And we can further write it as,
I=t2+t21+t4dtI=\int{\dfrac{{{t}^{2}}+{{t}^{2}}}{1+{{t}^{4}}}}dt
Now, we will add and subtract 1 from the numerator. So, we get,
I=t2+1+t211+t4dt I=(t2+11+t4+t211+t4)dt \begin{aligned} & I=\int{\dfrac{{{t}^{2}}+1+{{t}^{2}}-1}{1+{{t}^{4}}}}dt \\\ & I=\int{\left( \dfrac{{{t}^{2}}+1}{1+{{t}^{4}}}+\dfrac{{{t}^{2}}-1}{1+{{t}^{4}}} \right)}dt \\\ \end{aligned}
Now, we will take t2{{t}^{2}} common from both the numerator and the denominator. So, we get,
I=(1+1t2t2+1t2+11t2t2+1t2)dtI=\int{\left( \dfrac{1+\dfrac{1}{{{t}^{2}}}}{{{t}^{2}}+\dfrac{1}{{{t}^{2}}}}+\dfrac{1-\dfrac{1}{{{t}^{2}}}}{{{t}^{2}}+\dfrac{1}{{{t}^{2}}}} \right)}dt
Now, we will add and subtract 2 from the denominator. So, we get,
I=(1+1t2t2+1t2+22+11t2t2+1t2+22)dtI=\int{\left( \dfrac{1+\dfrac{1}{{{t}^{2}}}}{{{t}^{2}}+\dfrac{1}{{{t}^{2}}}+2-2}+\dfrac{1-\dfrac{1}{{{t}^{2}}}}{{{t}^{2}}+\dfrac{1}{{{t}^{2}}}+2-2} \right)}dt
Now, we know that (ab)2=a2+b22ab{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab and (a+b)2=a2+b2+2ab{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab. So, for a = t and b=1tb=\dfrac{1}{t}, we get, (t1t)2=t2+1t22{{\left( t-\dfrac{1}{t} \right)}^{2}}={{t}^{2}}+\dfrac{1}{{{t}^{2}}}-2 and (t+1t)2=t2+1t2+2{{\left( t+\dfrac{1}{t} \right)}^{2}}={{t}^{2}}+\dfrac{1}{{{t}^{2}}}+2. Therefore, we can write the first and the second term of the integral as,
I=(1+1t2(t1t)2+2+11t2(t+1t)22)dtI=\int{\left( \dfrac{1+\dfrac{1}{{{t}^{2}}}}{{{\left( t-\dfrac{1}{t} \right)}^{2}}+2}+\dfrac{1-\dfrac{1}{{{t}^{2}}}}{{{\left( t+\dfrac{1}{t} \right)}^{2}}-2} \right)}dt
And, it can be further written as,
I=1+1t2(t1t)2+2dt+11t2(t+1t)22dtI=\int{\dfrac{1+\dfrac{1}{{{t}^{2}}}}{{{\left( t-\dfrac{1}{t} \right)}^{2}}+2}dt+\dfrac{1-\dfrac{1}{{{t}^{2}}}}{{{\left( t+\dfrac{1}{t} \right)}^{2}}-2}dt}
Now, we will consider, 1+1t2(t1t)2+2dt\int{\dfrac{1+\dfrac{1}{{{t}^{2}}}}{{{\left( t-\dfrac{1}{t} \right)}^{2}}+2}dt} as A and 11t2(t+1t)22dt\int{\dfrac{1-\dfrac{1}{{{t}^{2}}}}{{{\left( t+\dfrac{1}{t} \right)}^{2}}-2}}dt as B. So, we can write I as,
I = A + B……… (i)
Now, we will simplify A and B individually to get the value of I. So, we can write,
A=1+1t2(t1t)2+2dtA=\int{\dfrac{1+\dfrac{1}{{{t}^{2}}}}{{{\left( t-\dfrac{1}{t} \right)}^{2}}+2}dt} and B=11t2(t+1t)22dtB=\int{\dfrac{1-\dfrac{1}{{{t}^{2}}}}{{{\left( t+\dfrac{1}{t} \right)}^{2}}-2}}dt
Now, consider (t1t)=u\left( t-\dfrac{1}{t} \right)=u and (t+1t)=v\left( t+\dfrac{1}{t} \right)=v. So, we can write, (1+1t2)dt=du\left( 1+\dfrac{1}{{{t}^{2}}} \right)dt=du and (11t2)dt=dv\left( 1-\dfrac{1}{{{t}^{2}}} \right)dt=dv
Therefore, we can write A and B as,
A=1u2+(2)2duA=\int{\dfrac{1}{{{u}^{2}}+{{\left( \sqrt{2} \right)}^{2}}}du} and B=1v2+(2)2dvB=\int{\dfrac{1}{{{v}^{2}}+{{\left( \sqrt{2} \right)}^{2}}}dv}
Now, we know that 1x2+a2dx=1atan1xa\int{\dfrac{1}{{{x}^{2}}+{{a}^{2}}}dx=\dfrac{1}{a}{{\tan }^{-1}}\dfrac{x}{a}}. So, for x = u and a=2a=\sqrt{2}, we can write,
1u2+(2)2du=12tan1(u2)\int{\dfrac{1}{{{u}^{2}}+{{\left( \sqrt{2} \right)}^{2}}}du}=\dfrac{1}{\sqrt{2}}{{\tan }^{-1}}\left( \dfrac{u}{\sqrt{2}} \right). We also know that 1x2a2dx=12alnxax+a\int{\dfrac{1}{{{x}^{2}}-{{a}^{2}}}dx=\dfrac{1}{2a}\ln }\left| \dfrac{x-a}{x+a} \right|. So, for, x = v and a=2a=\sqrt{2}, we can write, 1v2(2)2dv=122lnv2v+2\int{\dfrac{1}{{{v}^{2}}-{{\left( \sqrt{2} \right)}^{2}}}dv=\dfrac{1}{2\sqrt{2}}\ln }\left| \dfrac{v-\sqrt{2}}{v+\sqrt{2}} \right|
Therefore, we can write A and B as,
A=12tan1(u2)+cA=\dfrac{1}{\sqrt{2}}{{\tan }^{-1}}\left( \dfrac{u}{\sqrt{2}} \right)+c' and B=122lnv2v+2+cB=\dfrac{1}{2\sqrt{2}}\ln \left| \dfrac{v-\sqrt{2}}{v+\sqrt{2}} \right|+c''
Now, we will put the values of u and v, that is, u=(t1t)u=\left( t-\dfrac{1}{t} \right) and v=(t+1t)v=\left( t+\dfrac{1}{t} \right) in A and B. So, we get,
A=12tan1(t1t2)+cA=\dfrac{1}{\sqrt{2}}{{\tan }^{-1}}\left( \dfrac{t-\dfrac{1}{t}}{\sqrt{2}} \right)+c' and B=122lnt+1t2t+1t+2+cB=\dfrac{1}{2\sqrt{2}}\ln \left| \dfrac{t+\dfrac{1}{t}-\sqrt{2}}{t+\dfrac{1}{t}+\sqrt{2}} \right|+c''
Now, we will put the values of A and B in equation (i), so we get,
I=12tan1(t1t2)+122lnt+1t2t+1t+2+c+cI=\dfrac{1}{\sqrt{2}}{{\tan }^{-1}}\left( \dfrac{t-\dfrac{1}{t}}{\sqrt{2}} \right)+\dfrac{1}{2\sqrt{2}}\ln \left| \dfrac{t+\dfrac{1}{t}-\sqrt{2}}{t+\dfrac{1}{t}+\sqrt{2}} \right|+c'+c''
Now, we will put the Values of t, that is, tanx\sqrt{\tan x} and c = c’+ c’’. So, we get I as,
I=12tan1(tanx1tanx2)+122lntanx+1tanx2tanx+1tanx+2+cI=\dfrac{1}{\sqrt{2}}{{\tan }^{-1}}\left( \dfrac{\sqrt{\tan x}-\dfrac{1}{\sqrt{\tan x}}}{\sqrt{2}} \right)+\dfrac{1}{2\sqrt{2}}\ln \left| \dfrac{\sqrt{\tan x}+\dfrac{1}{\sqrt{\tan x}}-\sqrt{2}}{\sqrt{\tan x}+\dfrac{1}{\sqrt{\tan x}}+\sqrt{2}} \right|+c
Hence, we can say that integral of tanx\sqrt{\tan x} is 12tan1(tanx1tanx2)+122lntanx+1tanx2tanx+1tanx+2+c\dfrac{1}{\sqrt{2}}{{\tan }^{-1}}\left( \dfrac{\sqrt{\tan x}-\dfrac{1}{\sqrt{\tan x}}}{\sqrt{2}} \right)+\dfrac{1}{2\sqrt{2}}\ln \left| \dfrac{\sqrt{\tan x}+\dfrac{1}{\sqrt{\tan x}}-\sqrt{2}}{\sqrt{\tan x}+\dfrac{1}{\sqrt{\tan x}}+\sqrt{2}} \right|+c

Note: While solving this question, there are high chances of calculation mistakes as this question contains a lot of calculation. Also, we need to remember a few derivatives like, dxndx=nxn1\dfrac{d{{x}^{n}}}{dx}=n{{x}^{n-1}} and d(tanx)dx=sec2x\dfrac{d\left( \tan x \right)}{dx}={{\sec }^{2}}x and ddxx=12x\dfrac{d}{dx}\sqrt{x}=\dfrac{1}{2\sqrt{x}}. Also, we have to remember the integrals of 1x2a2\dfrac{1}{{{x}^{2}}-{{a}^{2}}} and 1x2+a2\dfrac{1}{{{x}^{2}}+{{a}^{2}}} as well. The possibility of mistake here is interchanging the above two integration formulas and getting the wrong answer.