Solveeit Logo

Question

Question: Evaluate the following expression \(\int\limits_{0}^{\pi }{\dfrac{x\sin \left( x \right)}{1+{{\cos }...

Evaluate the following expression 0πxsin(x)1+cos2(x)dx\int\limits_{0}^{\pi }{\dfrac{x\sin \left( x \right)}{1+{{\cos }^{2}}\left( x \right)}dx}.

Explanation

Solution

We will us the fact that the abf(x)dx=abf(b+ax)dx\int\limits_{a}^{b}{f\left( x \right)}dx=\int\limits_{a}^{b}{f\left( b+a-x \right)}dx in this problem. We use this because sin(x)\sin \left( x \right) is an odd function and cos2(x){{\cos }^{2}}\left( x \right) is an even function.

Complete step-by-step solution
Let I=0πxsin(x)1+cos2(x)dxI=\int\limits_{0}^{\pi }{\dfrac{x\sin \left( x \right)}{1+{{\cos }^{2}}\left( x \right)}dx}. Using the fact that abf(x)dx=abf(b+ax)dx\int\limits_{a}^{b}{f\left( x \right)}dx=\int\limits_{a}^{b}{f\left( b+a-x \right)}dx, we can rewrite the integral I as,
I=0π(πx)(sin(πx))1+cos2(πx)dxI=\int\limits_{0}^{\pi }{\dfrac{\left( \pi -x \right)\left( \sin \left( \pi -x \right) \right)}{1+{{\cos }^{2}}\left( \pi -x \right)}dx}
Observe that sin(πx)=sin(x)\sin \left( \pi -x \right)=\sin \left( x \right) and cos2(πx)=(cos(x))2=cos2(x){{\cos }^{2}}\left( \pi -x \right)={{\left( -\cos \left( x \right) \right)}^{2}}={{\cos }^{2}}\left( x \right).
Thus, on substituting this value in the integral, we get that,
I=0π(πx)sin(x)1+cos2(x)dxI=\int\limits_{0}^{\pi }{\dfrac{\left( \pi -x \right)\sin \left( x \right)}{1+{{\cos }^{2}}\left( x \right)}dx}
Separating the terms, we get that the value of the integral is,
I=π0πsin(x)1+cos2(x)dx0πxsin(x)1+cos2(x)dxI=\pi \int\limits_{0}^{\pi }{\dfrac{\sin \left( x \right)}{1+{{\cos }^{2}}\left( x \right)}dx}-\int\limits_{0}^{\pi }{\dfrac{x\sin \left( x \right)}{1+{{\cos }^{2}}\left( x \right)}dx}
But the second term in the right hand side is the required integral I. So on sending it to the left - hand side, we will get that,
2I=π0πsin(x)1+cos2(x)dx2I=\pi \int\limits_{0}^{\pi }{\dfrac{\sin \left( x \right)}{1+{{\cos }^{2}}\left( x \right)}dx}
Dividing both the sides by 2, we will get,
I=π20πsin(x)1+cos2(x)dxI=\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{\sin \left( x \right)}{1+{{\cos }^{2}}\left( x \right)}dx}
Hence now we just need to evaluate,
I1=0πsin(x)1+cos2(x)dx{{I}_{1}}=\int\limits_{0}^{\pi }{\dfrac{\sin \left( x \right)}{1+{{\cos }^{2}}\left( x \right)}dx}
We will solve this integral using substitution.
Let u=cos(x)u=\cos \left( x \right). Differentiating both sides, we get that,
sin(x)dx=dusin(x)dx=du-\sin \left( x \right)dx=du\Rightarrow \sin \left( x \right)dx=-du
The new limits of the integration will be from cos(0)\cos \left( 0 \right) to cos(π)\cos \left( \pi \right) which gives the limits of the integration as 1 and −1.Thus we get that,
I1=11du1+u2{{I}_{1}}=\int\limits_{1}^{-1}{\dfrac{-du}{1+{{u}^{2}}}}
Changing the limits of the integral, we get that,
I1=11du1+u2{{I}_{1}}=\int\limits_{-1}^{1}{\dfrac{du}{1+{{u}^{2}}}}
This is a standard integral and we know that,
dx1+x2=tan1(x)\int{\dfrac{dx}{1+{{x}^{2}}}={{\tan }^{-1}}\left( x \right)}
Using this, we get that,
I1=[tan1(u)]11=π2{{I}_{1}}=\left[ {{\tan }^{-1}}\left( u \right) \right]_{-1}^{1}=\dfrac{\pi }{2}
The required value of the integral I was π2I1\dfrac{\pi }{2}{{I}_{1}}. Hence, on substituting the value of I1{{I}_{1}}, we get that,
I=0πxsin(x)1+cos2(x)dx=π24I=\int\limits_{0}^{\pi }{\dfrac{x\sin \left( x \right)}{1+{{\cos }^{2}}\left( x \right)}dx}=\dfrac{{{\pi }^{2}}}{4}

Note: In this problem it is important to observe that x sin(x) is an odd function and cos2x{{\cos }^{2}}x is an even function. This is important because once you use this fact, you can break down the given integral into a simpler integral which is much easier to solve. Also while solving the definite integrals, it is important to make sure that you change the values of the limits of the integral otherwise, you might get the value of the integral wrong. Students sometimes miss out on the negative sign that one gets while substituting u = cos(x) and also the one you get while interchanging the limits 1 and -1 of the integral, I1{{I}_{1}}.