Solveeit Logo

Question

Question: Evaluate the following: \(\displaystyle \lim_{x \to 0}\dfrac{\sin ax}{\sin bx}\) where \( a,b\ne ...

Evaluate the following:
limx0sinaxsinbx\displaystyle \lim_{x \to 0}\dfrac{\sin ax}{\sin bx} where a,b0 a,b\ne 0 $$$$

Explanation

Solution

We multiply xx in the numerator and denominator of the quotient function sinaxsinbx\dfrac{\sin ax}{\sin bx} . Then we divide and multiply aa with the numeratorsinax\sin ax. We also divide and multiply bb with the denominatorsinbx\sin bx. We use the law of multiplication and division of limits and also the standard limit limx0sinxx=1\displaystyle \lim_{x \to 0}\dfrac{\sin x}{x}=1 to evaluate.

Complete step by step answer:
We know that limiting value for any real valued single variable function f(x)f\left( x \right) when the variable xx approaches to real number aa in the domain f(x)f\left( x \right) is denoted by
limxaf(x)=L\displaystyle \lim_{x \to a}f\left( x \right)=L
Here LL is called the limit of the function.
The limit LL exists for real valued single variable function f(x)f\left( x \right) at any point x=ax=a then if and only if Left hand limit(LHL)= right hand limit(RHL)=the value of the function at x=ax=a. In symbols,

& \text{LHL}=\text{RHL=}f\left( a \right) \\\ & \Rightarrow \underset{x\to {{a}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,f\left( x \right)=f\left( a \right) \\\ \end{aligned}$$ The multiplication law of limits is given by for two functions $f\left( x \right)$ and $g\left( x \right)$ $$\displaystyle \lim_{x \to a}f\left( x \right)\cdot \displaystyle \lim_{x \to a}g\left( x \right)=\displaystyle \lim_{x \to a}\left( f\left( x \right)\cdot g\left( x \right) \right)$$ The division rule of limits for two functions $f\left( x \right)$ and $g\left( x \right)\ne 0$ is, $$\dfrac{\displaystyle \lim_{x \to a}f\left( x \right)}{\displaystyle \lim_{x \to a}g\left( x \right)}=\displaystyle \lim_{x \to a}\left( \dfrac{f\left( x \right)}{g\left( x \right)} \right)$$ We also know that the limit of a constant is constant $$\displaystyle \lim_{x \to a}C=C$$ We know the standard limit for sine function $\displaystyle \lim_{x \to 0}\dfrac{\sin x}{x}=1$. We The given function to evaluate limit is $$\displaystyle \lim_{x \to 0}\dfrac{\sin ax}{\sin bx}\text{ where }a,b\ne 0$$ Let us multiply $x$ in the numerator and denominator. $$\begin{aligned} & \displaystyle \lim_{x \to 0}\dfrac{\sin ax}{x}\text{ }\times \dfrac{x}{\sin bx} \\\ & =\displaystyle \lim_{x \to 0}\dfrac{\dfrac{\sin ax}{x}}{\dfrac{\sin bx}{x}}\text{ } \\\ \end{aligned}$$ Let us multiply and divide $a$ in the numerator and also multiply and divide $b$ with in the denominator. We can do that because we have been provided with the condition $a\ne 0,b\ne 0$.So we have $$=\displaystyle \lim_{x \to 0}\dfrac{\dfrac{\sin ax}{ax}\times a}{\dfrac{\sin bx}{bx}\times b}\text{ }$$ Now we use law of division and then law of multiplication to get , $$\begin{aligned} & =\displaystyle \lim_{x \to 0}\dfrac{\dfrac{\sin ax}{ax}\times a}{\dfrac{\sin bx}{bx}\times b}\text{ } \\\ & \text{=}\dfrac{\displaystyle \lim_{x \to 0}\dfrac{\sin ax}{ax}\times a}{\displaystyle \lim_{x \to 0}\dfrac{\sin bx}{bx}\times b}\text{ } \\\ & \text{=}\dfrac{\displaystyle \lim_{x \to 0}\dfrac{\sin ax}{ax}\times \displaystyle \lim_{x \to 0}a}{\displaystyle \lim_{x \to 0}\dfrac{\sin bx}{bx}\times \displaystyle \lim_{x \to 0}b}\text{ } \\\ \end{aligned}$$ We know that the limit of constant is constant . So we have, $$\begin{aligned} & \text{ =}\dfrac{\displaystyle \lim_{x \to 0}\dfrac{\sin ax}{ax}\times \displaystyle \lim_{x \to 0}a}{\displaystyle \lim_{x \to 0}\dfrac{\sin bx}{bx}\times \displaystyle \lim_{x \to 0}b}\text{ } \\\ & \text{=}\dfrac{\underset{x\to 0}{\mathop{a\lim }}\,\dfrac{\sin ax}{ax}}{\underset{x\to 0}{\mathop{b\lim }}\,\dfrac{\sin bx}{bx}}\text{ } \\\ \end{aligned}$$ Now we substitute $ax=u,bx=v$ in the above result to get, $$\text{ =}\dfrac{\underset{x\to 0}{\mathop{a\lim }}\,\dfrac{\sin u}{u}}{\underset{x\to 0}{\mathop{b\lim }}\,\dfrac{\sin v}{v}}\text{ }$$ Now we use the standard limit $\displaystyle \lim_{x \to 0}\dfrac{\sin x}{x}=1$ and get, $$\text{ =}\dfrac{\underset{x\to 0}{\mathop{a\lim }}\,\dfrac{\sin u}{u}}{\underset{x\to 0}{\mathop{b\lim }}\,\dfrac{\sin v}{v}}\text{ =}\dfrac{a\times 1}{b\times 1}=\dfrac{a}{b}$$ **So the value of the limit is $\dfrac{a}{b}$** **Note:** We can alternatively solve the problem with L'Hopital's rule for the indeterminate form $\dfrac{0}{0}$. Here we differentiate the numerator and the denominator until the limiting value at the numerator is non-zero.