Solveeit Logo

Question

Question: Evaluate the following- \[\dfrac{{5{{\sin }^2}{{30}^ \circ } + {{\cos }^2}{{45}^ \circ } - 4{{\tan ...

Evaluate the following-

5sin230+cos2454tan2302sin30cos30+tan45\dfrac{{5{{\sin }^2}{{30}^ \circ } + {{\cos }^2}{{45}^ \circ } - 4{{\tan }^2}{{30}^ \circ }}}{{2\sin {{30}^ \circ }\cos {{30}^ \circ } + \tan {{45}^ \circ }}}

Explanation

Solution

Use the values of given trigonometric identities which are given as-

sin30=12\sin {30^ \circ } = \dfrac{1}{2} ,cos45=12\cos {45^ \circ } = \dfrac{1}{{\sqrt 2 }} , cos30=32\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2},tan45=1\tan {45^ \circ } = 1 and tan30=13\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }} . Put them in the given function and solve the values to get the answer.

Complete step-by-step answer:

We have to evaluate the given function

5sin230+cos2454tan2302sin30cos30+tan45 \Rightarrow \dfrac{{5{{\sin }^2}{{30}^ \circ } + {{\cos }^2}{{45}^ \circ } - 4{{\tan }^2}{{30}^ \circ }}}{{2\sin {{30}^ \circ }\cos {{30}^ \circ } + \tan {{45}^ \circ }}}

We know the values of trigonometric identities are given as-

sin30=12\sin {30^ \circ } = \dfrac{1}{2} ,cos45=12\cos {45^ \circ } = \dfrac{1}{{\sqrt 2 }} , cos30=32\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2},tan45=1\tan {45^ \circ } = 1 and tan30=13\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}

On using the values of these identities in the formula we get,

5(12)2+(12)24×(13)22(12)(32)+1 \Rightarrow \dfrac{{5{{\left( {\dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^2} - 4 \times {{\left( {\dfrac{1}{{\sqrt 3 }}} \right)}^2}}}{{2\left( {\dfrac{1}{2}} \right)\left( {\dfrac{{\sqrt 3 }}{2}} \right) + 1}}

On opening the brackets we get,

5×14+124×132×32×2+1 \Rightarrow \dfrac{{5 \times \dfrac{1}{4} + \dfrac{1}{2} - 4 \times \dfrac{1}{3}}}{{\dfrac{{2 \times \sqrt 3 }}{{2 \times 2}} + 1}}

On multiplying the required values we get,

54+124332+1 \Rightarrow \dfrac{{\dfrac{5}{4} + \dfrac{1}{2} - \dfrac{4}{3}}}{{\dfrac{{\sqrt 3 }}{2} + 1}}

On Taking LCM on numerator and denominator we get,

(5×3)+6(4×3)123+22 \Rightarrow \dfrac{{\dfrac{{\left( {5 \times 3} \right) + 6 - \left( {4 \times 3} \right)}}{{12}}}}{{\dfrac{{\sqrt 3 + 2}}{2}}}

On solving the numerator we get,

15+616123+22 \Rightarrow \dfrac{{\dfrac{{15 + 6 - 16}}{{12}}}}{{\dfrac{{\sqrt 3 + 2}}{2}}}

On simplifying we get,

5123+22 \Rightarrow \dfrac{{\dfrac{5}{{12}}}}{{\dfrac{{\sqrt 3 + 2}}{2}}}

Now we can write the given function as-

512×23+2 \Rightarrow \dfrac{5}{{12}} \times \dfrac{2}{{\sqrt 3 + 2}}

On cancelling the terms which can be cancelled we get,

56×13+2 \Rightarrow \dfrac{5}{6} \times \dfrac{1}{{\sqrt 3 + 2}}

Then we get,

Answer\Rightarrow 56(2+3)\dfrac{5}{{6\left( {2 + \sqrt 3 } \right)}}

Note: You can also solve it further by rationalizing but it is not required. We can rationalize it by multiplying 232 - \sqrt 3 on the numerator and denominator.

5(23)6(2+3)(23) \Rightarrow \dfrac{{5\left( {2 - \sqrt 3 } \right)}}{{6\left( {2 + \sqrt 3 } \right)\left( {2 - \sqrt 3 } \right)}}

On using the identity (ab)(a+b)=a2b2\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2} we get,

5(23)6(22(3)2) \Rightarrow \dfrac{{5\left( {2 - \sqrt 3 } \right)}}{{6\left( {{2^2} - {{\left( {\sqrt 3 } \right)}^2}} \right)}}

On solving we get,

5(23)6(43) \Rightarrow \dfrac{{5\left( {2 - \sqrt 3 } \right)}}{{6\left( {4 - 3} \right)}}

On simplifying we get,

5(23)6 \Rightarrow \dfrac{{5\left( {2 - \sqrt 3 } \right)}}{6}

This can also be the answer of the given question.